
JavaGL1 - A 3D Graphics Library in Java
Bing-Yu Chen, Tzong-Jer Yang, and Ming Ouhyoung

Communications and Multimedia Laboratory,
Department of Computer Science and Information Engineering,

National Taiwan University, Taipei, Taiwan, ROC

1 Web site: http://www.cmlab.csie.ntu.edu.tw/~robin/JavaGL/.

Abstract
With the popularity of Internet/Intranet and Virtual
Reality (VR), more and more applications, for
example, VRML browser, require 3D graphics
capabilities over network. In this paper, we
presented a 3D graphics library written in Java to
fulfill this requirement. The performance
evaluation is especially addressed for further
studies in developing 3D graphics applications over
network.

1. Introduction
As the Internet/Intranet and virtual reality are
getting more and more popular, it comes to demand
a 3D graphics capability over network. Because
Internet itself is a heterogeneous environment, we
need to have 3D graphics capabilities in different
platforms. Observing the development of Internet,
we believe that “pay-per-use” software will be
realized in the near future. Under this new
paradigm, we will need to distribute applications
from servers to clients in any platforms. Hence, we
decide to develop a 3D graphics library that is
platform-independent, and Java is chosen for its
platform-independent feature.

Furthermore, it is desired that this 3D graphics
library is easy to learn, so we define the API, in a
manner, quite similar to OpenGL since OpenGL is
a popular commercial standard.

The remainder of the paper is organized as follows.
In Section 2, implementation issues are described.
In Section 3, we apply our 3D graphics library,
JavaGL, to render several models with the
performance evaluated. We close with conclusions
and future work in Section 4.

2. Implementation issues
OpenGL’s functions can be divided into 3
categories: GL utility library (glu), OpenGL (gl),

and GLX utilities (glX), as shown in Figure 1(a).
For Microsoft Windows, there are some differences
in functions' names, as shown in Figure 1(b).

GL Utility
Library

(glu)

OpenGL
(gl)

GLX
Utilities

(glX)

X
Windows

(Xlib)

GL Utility
Library

(glu)

OpenGL
(gl)

WGL
Utilities

Microsoft
Windows
(Win32)

(a) (b)

Figure 1. (a) OpenGL API hierarchy for X. (b)
OpenGL API hierarchy for Microsoft
Windows.

Where glu is a set of commonly used graphics
routines, and gl is the main part of OpenGL. GLX
or WGL is the implementation depending on
platforms. Besides these 3 interfaces, there is an
underlying graphics kernel which is transparent to
programmers. We follow this principle to develop
our JavaGL, as shown in Figure 2.

GL Utility
Library

(glu)
Java version

JavaGL
(gl)

Java version

GLX
Utilities

(glX)
Java version

Java Virtual
Machine

(VM)

Figure 2. JavaGL API hierarchy.

The implementation is mainly based on the
specification of OpenGL [1], and some issues are
summarized as follows.

1. For GL utility library (glu), JavaGL (gl), and
GLX utilities (glX), we follow the
methodologies described in the OpenGL
specification and the implementation in Mesa
3-D graphics library [2].

2. For the underlying graphics kernel, we put
most of our efforts here. For instance, a
drawing command in OpenGL may be
executed immediately or be postponed in a
display list, depending on the state of the
display list. In C, we can simply use function
pointers to solve this problem. In Java, since
there are no pointers, we use class inheritance
instead. We also refer to Graphics Gems [3, 4,
5] for performance enhancements.

3. Results
Currently, we have implemented over 150 functions
in JavaGL, including functions for 3D model
transformation, 3D object projection, depth buffer,
smooth shading, lighting, material, and display list.
The functions not yet supported so far are mainly
for anti-aliasing and texture mapping.

To evaluate JavaGL’s performance, we use a test
program which renders 12 spheres with different
materials assigned, as shown in Figure 3. We
execute the test program on both a SUN Sparc20
and a Pentium-100 PC. We also rewrote the same
test program in Mesa and OpenGL 1.1 for
Microsoft [6], and measure the rendering time, as
listed in Table 1.

On the SUN Sparc20, the test program with Mesa is
about 20 times faster than JavaGL, as claimed by
SUN that Java is about 20 times slower than C [8].
This can be improved greatly if a better Java
interpreter exists. Table 2 shows the effects of Java
compilers and interpreters. In the same
configuration, if one replaces SUN JDK’s class
library with the one optimized by Symantec Café’s
compiler [9], there is no noticeable improvement; if
one replaces SUN JDK’s interpreter with Symantec
Café’s interpreter that supports Just-In-Time
compiler (JIT), there is over 3 times performance
speedup.

On the Pentium-100 PC, because Mesa for
Windows 95 is not yet available, we compare
JavaGL with OpenGL 1.1 for Microsoft. Though
we have used Symantec Café’s compiler and
interpreter, OpenGL 1.1 for Microsoft is still 16
times faster than JavaGL. According to Microsoft’s
announcement [6], lots of optimizations have been
done in OpenGL 1.1 for Microsoft.

Figure 4 is the teapot rendered with JavaGL and
Mesa respectively.

4. Conclusions and Future work
The JavaGL is being applied to develop our next

generation VRML browser running across Internet.
The goal of this VRML browser is to provide users
all the necessary functions from servers so that
users do not have to install additional hardware or
software for 3D graphics. JavaGL meets this
requirement because it’s purely implemented by
Java which is designed for Internet.

Performance is a great challenge for any Java
applications. In the future, we will focus on the
performance improvement by replacing some
algorithms with faster ones. We also expect that the
performance will be improved by faster Java
interpreters and Java compilers.

Javasoft also has plans to develop a 3D graphics
API, Java3D. According to the schedule, an early
release will be announced in 1997. We will also
notice Java3D’s development and shift our strategy
to meet the trend.

Acknowledgements
This work is a part of the Multimedia Digital
Classroom (MDC) project sponsored by National
Science Council (NSC) under the grant NSC 85-
2622-E-002-015.

References
[1] Mark Segal, and Kurt Akeley, “The OpenGL

Graphics Systems: A Specification (Version
1.1),” Silicon Graphics, Inc., 1996.
Http://www.sgi.com/Technology/openGL/glspe
c/glspec.html.

[2] Brian Paul, “The Mesa 3-D Graphics Library.”
Http://www.ssec.wisc.edu/~brianp/Mesa.html.

[3] Andrew S. Glassner, “Graphics Gems,”
Academic Press, Inc., 1990.

[4] James Arvo, “Graphics Gems II,” Academic
Press, Inc., 1991.

[5] David Kirk, “Graphics Gems III,” Academic
Press, Inc., 1992.

[6] “Sample: OpenGL 1.1 Release Notes &
Components,” Micrrosoft, 1996.
Http://www.microsoft.com/kb/articles/q154/8/7
7.htm.

[7] Jackie Neider, Tom Davis, and Mason Woo,
“OpenGL Programming Guide,” Addison-
Wesley, 1993.

[8] Arthur van Hoff, Sami Shaio, and Orca Starbuck,
“Hooked on Java,” Addision-Wesley, 1996.

[9] “Café for Windows 95/NT,” Symantec, 1996.
Http://cafe.symantec.com/cafe/.

JavaGL 1.0 Mesa 1.2.6 JavaGL 1.0 OpenGL 1.1 for
Microsoft

Time (ms) 24391 1681 8240 500

Platform SUN Sparc20 Model 71, 64 MB memory,

24-bit display (ZX).

Solaris 2.5.

Intel Pentium 100, 32 MB memory,

24-bit display (ET 4000/W32p).

Windows 95.

Programming

environment

Symantec Café 1.5
Java compiler,

SUN JDK 1.0.2 Java
interpreter.

GNU C 2.7.2.1 Symantec Café 1.5
Java compiler &
interpreter

MS-Visual C 4.2

Table 1. Table of performance comparisons. The test program renders 12 spheres, as shown in Figure 3.

SUN JDK classes +

SUN JDK interpreter

Café classes +

SUN JDK interpreter

SUN JDK classes +

Café interpreter

Café classes +

Café interpreter

Time (ms) 29490 29770 8680 8780

Table 2. The effects of Java compilers and Java interpreters. SUN JDK classes are not optimized while
Café classes are optimized by Café’s compiler. Café’s interpreter supports Just-In-Time
compiler (JIT) and performs better than SUN JDK’s interpreter. These data are measured
under the same PC configuration used in Table 1.

Figure 3. Twelve spheres are rendered to measure performances. Each sphere contains 256 polygons.
This program is an example in OpenGL Programming Guide (code from Listing 6-3, pp.
183-184, Plate16) [7]. This figure is rendered with JavaGL.

(a) (b)

Figure 4. The teapot rendered (a) with JavaGL, and (b) with Mesa 3-D graphics library. This teapot
contains 604 triangles and takes 7.34 sec for JavaGL on the same SUN Sparc20 in Table 1.

