
Free-Form Deformation with Automatically Generated Multiresolution Lattices

Yutaka Ono* Bing-Yu Chen* Tomoyuki Nishita* Jieqing Feng�
*The University of Tokyo �Zhejang University

{yutaka-o, robin, nis}@is.s.u-tokyo.ac.jp jqfeng@cad.zju.edu.cn

Abstract

Developing intuitive and efficient methods for shape
editing is one of the most important areas in computer
graphics, and free-form deformation (FFD), which is one
of such methods, allows the user to deform a model easily
by moving a set of control points, collectively called the
lattice. Although the FFD method can be used for both
global and local deformations, the user must define a
suitable lattice manually or use a simple shaped lattice
such as a parallelepiped. Therefore, we propose a new
FFD method that automatically generates the lattices with
which both types of deformations can be achieved.

Our method refines a bounding box of the model and
generates a set of finer lattices, which hierarchically ap-
proximate the shape of the model. Through adjusting the
control points of the generated lattices, both global and
local deformations of the model can be achieved easily.
Moreover, the method allows hierarchical deformation of
the model by combining different levels of lattice.

1. Introduction

Recently, complex and detailed 3D models have be-
come widely used in many fields such as the movies,
computer games, and so on. Such elaborate models fasci-
nate a lot of people, so that not only professional users but
also amateur hobbyists are interested in making such
models. Hence, useful methods for 3D shape design,
modification, and animation have become more and more
important in computer graphics.

FFD [10] is one of the methods used for editing such
models. It achieves a smooth deformation of the models in
a model independent way; i.e. the user can deform a
model without any knowledge of its mathematical back-
ground. Hence, it is highly popular among both profes-
sional and amateur users.

The procedures of the FFD method are as follows: the
user defines a deformable region of space by placing a set
of control points, which together form a lattice. A model
is then embedded in the deformable region. The user
moves one or some of the control points to deform the
deformable space and this is automatically passed onto the
model.

The FFD method allows the user to deform the model
intuitively and efficiently, if the lattice is properly de-
signed. For example, the user can do global deformation
such as bending, twisting, or tapering if the lattice is com-
prised of a few control points and the deformable space is
large enough to contain all the vertices of the model to be
deformed. On the other hand, he or she can do local de-
formation such as adding bumps if the lattice has a suit-
able density of the control points close to the region that is
to be deformed. However, it is not easy to design suitable
lattices and to capture the correspondence between lattices
and the model to be deformed since the original FFD
method allows only parallelepiped lattices.

To solve this problem, researchers have introduced
methods to generate more general lattice structures. Al-
though these methods allow a greater inventory of de-
formable space, some of them, e.g. extended free-form
deformation (EFFD) [2], restrict the flexibility of the
original method. MacCracken and Joy�s method [7] al-
lows lattices to have arbitrary topology, however, this
cannot be applied to lattices with many control points
since the computational cost is relatively high. Moreover,
almost all of these methods concentrate only on deforma-
tion techniques with the available lattices, none of them
have introduced a way to automatically generate appro-
priate lattices. Thus, the user must carry out the tedious
task of defining lattices manually, and this obviously de-
creases his or her productivity.

Other approaches for efficient and intuitive deforma-
tion are introduced by using an axis [6] or some wires
[11] instead of a lattice. Although these methods provide a
simpler user-interface than traditional ones, they also re-
strict the flexibility, and again, the user must manually
define a suitable axis or wires.

Therefore, in this paper, we propose a method to help
users deform 3D models by generating FFD lattices auto-
matically while keeping the flexibility of the original FFD
method. In our method a bounding box for the model is
generated first, and this is also identified with the lattice.
Then, the lattice is refined hierarchically and a set of lat-
tices called multiresolution lattices is generated, so that
the user can select from them an appropriate lattice ac-
cording to his or her purpose, i.e. a lattice with a few con-
trol points for global deformation or a lattice closely ap-
proximating the shape of the model for local deformation.
Moreover, by refining not only the unmodified lattices but

also the modified ones, it is possible to do hierarchical
deformation, with which the user can deform the model
hierarchically without redefining the lattices from the
bounding box. Thus, our approach liberates the user from
defining lattices manually, strengthens the intuition of
FFD, and increases the user�s productivity.

2. Automatic generation of multiresolution

lattices

Before describing the details of our method, we define
the terms used throughout this paper by reference to [7]:
•

•

•

•

s:
•
•

•

•

•

•

A lattice is defined as a set of control points and an
associated set of pairs that specifies the connectivity
of the control points.
An edge of the lattice is defined by two control
points that are connected in the lattice.
A face of the lattice is defined by a minimal con-
nected loop of control points.
A cell of the lattice is the region of space bounded
by a closed set of faces.

Our deformation approach allows lattices with the
following properties, called valid lattice

The lattice is well-connected.
All cells of the lattice are closed, not containing any
holes.
The lattice is not self-intersecting.

2.1. Octree subdivision lattices

To do the deformation, the region of the model to be
deformed is first determined by the user. Although the
region maybe cover the whole model or just only some
parts of it, our approach can be applied to both types.

Given the region to be deformed, our method makes
the lattices hierarchically approximate to the shape of the
region by repeating 3D subdivisions of the bounding box,
which is identified with the lowest-level lattice of the mul-
tiresolution lattices. The lowest-level lattice could be an
axis-aligned bounding box (AAB), an oriented bounding
box (OBB) [3], or a minimum-volume bounding box. In
most cases, we found that the OBB was the most intuitive
lattice for the user since its axes follow the shape of the
principal components of the region to be deformed. After
defining the lowest-level lattice, we generate multiresolu-
tion lattices using octree subdivision rules that are similar
to the rules for octree subdivision of 3D space. The lat-
tices produced by applying these rules consist of the fol-
lowing types of new control point:

A cell control point is that defined by the average of
the control points of the lattice which define the cell.
A face control point is that defined by the average of
the control points of the lattice which define the face.
An edge control point is the midpoint of the edge.

At each subdivision step, the above three types of con-
trol point are generated for each cell, face and edge of the
lattice. These new control points and old control points

are reconnected to create a new lattice according to the
following reconnection rules: (1) each new cell control
point is connected to the new face control points gener-
ated from the faces that define the old cell; (2) each new
face control point is connected to the new edge control
points generated from the edges that define the old face;
(3) each new edge control point is connected to the two
old control points that define the old edge.

Using the octree subdivision rules, we generate octree
subdivision lattices as follows:
1. Define the lowest-level lattice.
2. Create a finer lattice by applying the octree subdivi-

sion rules to the current-level lattice.
3. Cut the cells of the new lattice that do not contain

any vertex of the model.
4. Repeat steps 2 and 3 until the lattice has user speci-

fied details.
Since the lattices, which are generated by the above

procedure, can approximate the shape of the model hier-
archically and are comprised of uniformly-located control
points as shown in Figure 1, the user can do any level of
deformation with ease and intuition. Moreover, since oc-
tree subdivision rules can be applied to any valid lattice,
this method can be applied not only to unmodified lattices
but also to the user-modified ones. This allows the user to
do hierarchical deformation (see Section 4).

(a) (b) (c)

(d) (e) (f)

Figure 1. Octree subdivision lattices generated
for a whole horse model. (a) The lowest-level lat-
tice. (b) through (f) Finer lattices.

2.2. Extensions of octree subdivision lattices

Although the octree subdivision lattices can approxi-
mate the shape of the model, they sometimes fail to do a
sufficiently good approximation around its boundary, es-
pecially when the level of the lattice is low and each cell
of the lattice is relatively large compared to the space oc-
cupied by the vertices of the model. Since it is desirable
that the lattices approximate the model as closely as pos-
sible for intuitive deformation, we developed a method
that improves the octree subdivision lattices. In this
method, the control points on the boundary of each axis

are moved close to the model along the axis while main-
taining a certain offset. We call the lattices generated by
this method shrink octree subdivision lattices as shown in
Figure 2 (a). These lattices are useful when the user de-
forms a model globally with low-level lattices that consist
of a few cells. However, applying this method to a high-
level lattice often generates a lattice with scattered-
looking control points if we have no proper offset. There-
fore shrink octree subdivision lattices should normally be
used for global deformation.

(a) (b)

Figure 2. (a) A shrink octree subdivision lattice
and (b) a local octree subdivision lattice corre-
sponding to Figure 1 (c).

Although the user can do any level of deformation by
selecting a proper lattice among multiresolution lattices,
to make the user to focus on the regions of the model
which he or she wants to deform locally, we also allow the
user to apply octree subdivision rules only to user-
specified cells. This method is similar to the local subdivi-
sion proposed in [8]. Although it complicates the local
topological structure, the resulting lattice is still valid as
shown in Figure 3. This method adds much flexibility to
the lattices, and allows the user to deform some regions of
the model locally and the rest globally without redefining
the lattices as shown in Figure 2 (b).

a
subdivide

shared face
subdivide

cell

8 hexah
Figure 3. A lo

3. Deformatio

To deform a
the model within
lattice using the
troduced by Mac

stood that we can parameterize each vertex more easily by
regarding the lattice as b-spline volume when the lattice is
comprised of only hexahedral cells, since the b-spline
subdivision method is a special case of the Catmull-Clark
subdivision method. However, if the lattice is locally
subdivided, it cannot be regarded as b-spline volume. This
is the reason why we use the Catmull-Clark subdivision.
The Catmull-Clark subdivision method is applied to the
user-editing lattice, and then produces a sequence of sub-
divided lattices that successively approximate the deform-
able space. Each vertex of the model is then parameter-
ized with the minimal cell of the subdivided lattices that
contains the vertex. NOTICE: the subdivided lattices are
different from the multiresolution lattices described in the
previous section. The former ones are used only for
parameterization, while the latter ones are actually dis-
played and modified by the user.

3.1. Property of Catmull-Clark subdivision vol-

umes

The Catmull-Clark subdivision rules for producing
subdivided lattices are described in Appendix. These sub-
divided lattices have some special features, which are
used in our deformation process. One of the features is
concerned with the connectivity of each control point. To
describe them, we define the valence of a point within the
cell of a lattice to be the number of the cell�s edges that
connect the point. Given the cell of a lattice, the subdivi-
sion rules create a new cell at each point of the cell. The
new cell generated at a point of valence v has 2v 4-sided
faces, 2 points of valence v, and 2v points of valence 3.
For example, a new cell generated at a point of valence 3
has 6 4-sided faces and 8 points of valence 3, that is, a
hexahedron. Additionally, we define a normal point to be
a point whose valence is equal to 3 and an extraordinary
point whose valence is not equal to 3. In the case of sim-
ple octree subdivision lattices (not locally subdivided), it
can be easily proved that the Catmull-Clark subdivision
rules produce subdivided lattices comprised of only nor-
mal points and hexahedral cells, and the number of cells
multiplies by a factor of eight at each subdivision. Ex-
2 hexahedr

edra 1 nonahedron
cal subdivision of a hexahedron.

n process using one lattice

model, we parameterize each vertex of
 the deformable space defined by the
Catmull-Clark subdivision volumes in-

Cracken and Joy [7]. It should be under-

traordinary points appear only when some of the cells are
locally subdivided. Thus, the size of required memory
space increases by a factor of about eight at each subdivi-
sion.

Another feature is concerned with a local property of
the subdivided lattices. As in the case of the Catmull-
Clark subdivision surfaces, each control point of the Cat-
mull-Clark subdivision volumes influences only limited
regions of the volumes. This is explained by using the
symmetric bivariate function dist, which is recursively
defined by two control points:

0),(=ppdist• , where p is a control point of the lat-
tice.

• 1),(=qpdist , where p and q are different control
points contained in the same cell.

• 1),(+= iqpdist , where p and q are different control

points, , and there exists a con-
trol point s such that dist and

}),(|{ irpdistrq ≤∉
p,(is =) 1),(=qsdist

=1,p

.

}1) =

2,1, pp DD ∪∪

2,p

4,p

2,p =

3

N

2,p
,p

3,pN
3,p

4,p

Simple observation of the subdivision rules in Appen-
dix shows that at each subdivision step, one control point
p does not influence the positions of the newly generated
points generated for the cells, faces, edges, and points that
contain at least one point outside of D

. This property is used in our deforma-
tion algorithm described in the next section.

,(|{ qpdistq

3.2. Deformation algorithm

Using the features of the Catmull-Clark subdivision
volumes, we improved the deformation process outlined
in [7]. The essence of deformation process is basically the
same as the original FFD method in [10]. First, a lattice is
defined by the user using our lattice generation method.
Next, each vertex of the region of the model to be de-
formed is parameterized by using a sequence of the Cat-
mull-Clark subdivided lattices: each vertex is �tagged�
with a pointer to the minimal cell of the subdivided lat-
tices that contains the vertex and its local coordinate in the
cell. Then, the lattice is modified by the user. Finally,
each vertex of the model is relocated by using its local
coordinate in the minimal cell and a sequence of the sub-
divided lattices that are generated from the modified lat-
tice. However, there is a problem in the parameterization
and relocation steps: to execute the Catmull-Clark subdi-
vision to a lattice, we must keep much of its topological
information, which increases by a factor of eight with
each subdivision step, thus intensively increasing the re-
quired memory space. Therefore, it is almost impossible
to subdivide high-level octree subdivision lattices such as
shown in Figure 1 (e) or (f) comprised of a great many
cells used for local deformation.

Figure 4. Subdivided lattice generated when the
user moves the circled control point.

Fortunately, if the user moves one control point p of a
lattice, only the vertices of the model that are enclosed by
the newly generated points for
may be changed their positions since p does not influence
the positions of newly generated points for the boundary
of . Moreover, the newly generated points for the
boundary of N may be located outside of N , be-
cause they are influenced by N . Therefore, the candi-
date vertices of the model for relocation are all contained
in the cells defined by . Finally, since the newly gen-
erated points for N are influenced by N , we also
have to take D into consideration. In summary, when

when one control point p of the lattice is moved by the
user, it is sufficient to subdivide the cells consisted by

 as shown in Figure 4, then parameterize and relo-
cate the vertices inside the cells consisted by .

0,pD

2,pN

4,PN
,PN 3

A

BL

B

3,SN

SN

parame
 not be valid. ed lattice that m

Taking this into account, we define our deformation
algorithm that use only one of the multiresolution lattices
as follows:
1. Multiresolution lattices are generated for the model

to be deformed.
2. One of the multiresolution lattices is selected by the

user.
3. The given model and the selected lattice are dupli-

cated to be two pairs A and B. Both of them contain
a lattice and a model. In the following steps, a lattice

 and a model of the one pair A are displayed
and deformed by the user, while the other lattice L
and the other model of the other pair B are used
only for parameterization so that it is never displayed
nor deformed.1

4. A set of control points
A

S of the lattice L is
specified by the user as the moving points set.

AL AM
B

BM

P

5. A set of control points
B

S of the lattice that
corresponds to of is specified.

P
APS L

A
6. A set of subdivided lattices

21 nB
is defined, where

i
L is a

subdivided lattice generated by applying the Cat-
mull-Clark subdivision rules i times to

},...,,{ BBBL LLLS =

4,4, q
Sq

S NN
P

BP ∈
= U .

B
7. Each vertex of the model contained in

BP
 is

parameterized with the minimal cell of the lattices in
 that contains the vertex.

BM

LS
B

8. The lattice AL is modified by the user by moving the
points in . S

AP
9.

BL is recalculated by using the corresponding con-
trol points .
S

4,PSN
A

10. Each vertex of the model contained in 3,AP
 is

relocated by using the parameters of the correspond-
ing vertex of calculated at step 7.

11. Repeat steps 4 through 10 until the user finishes de-
formation.

AM

BM

As in the algorithm in [7], the above algorithm cannot
do exact deformation since the Catmull-Clark subdivi-
sions that approximate the deformable space are done
only a finite number n times, which is described at step 6,
and the deformation results are improved by increasing n.
The most important point in our algorithm is that only a
limited region of the lattice is subdivided, so that it can be
applied to deformation with lattices of a great many cells.
On the other hand, if the number of control points of the
lattice is small enough, we subdivide the whole lattice and
parameterize all the vertices of the model only once at the
preprocess step. We need neither to subdivide at each
change of the moving points set nor to store unmodified
lattice and model.

1 Both and are necessary because appropriate teriza-

ay
BL BM

tion cannot be obtained with a deform

The local coordinate of each vertex in a cell is calcu-
lated in two ways as in [7]. For a hexahedral cell, it is
calculated by trilinear interpolation. For other types of cell,
we partition the cells into tetrahedra, and then calculate
the weights of the four points of the tetrahedron that in-
clude the vertex.

4. Deformation process using multiresolution

lattices

The process for hierarchical deformation using more
than one lattice of the multiresolution lattices is slightly
different from the process of just using one lattice, which
is described in the previous section, since the user could
change the deformation levels from global to local and
vice versa.

4.1. From global to local deformation

Hierarchical deformation from global to local pro-
ceeds as follows:
1. The user globally deforms the model with a low-

level lattice.
2. A finer lattice is generated by applying the octree

subdivision rules to the modified lattice.
3. The user locally deforms the model with the finer

lattice.
4. Repeat steps 2 and 3 if a finer deformation is needed.

To extend the algorithm in Section 3 to achieve this
kind of hierarchical deformation is rather simple, but there
is one problem caused by the difference between the oc-
tree subdivision and the Catmull-Clark subdivision rules.

Let O and C be the maps from low-level lattice to
high-level one defined by the octree and the Catmull-
Clark subdivision rules respectively, 0L be the lowest-
level lattice, and i be 0 , where i is the level of the
multiresolution lattices. To deform the model by using iL ,
we first calculate a set of parameters P of vertex set V
using , which is generated by applying the Cat-
mull-Clark subdivision rules n times to L . After L is
modified by the user, L is become , and each vertex
in V are relocated by using . If we apply the octree
subdivision rules to now to get for local
deformation, it is needed to recalculate the parameters

 from . Unfortunately, in many cases, it is im-
possible to get P directly because may not be
valid, so we use P calculated from in-
stead. But it is easy to find P in general, hence
the vertex position calculated by is slightly different
from the original one. This is caused by the difference
between O and C.

L)(LOi

i
iP

i

'i

)(i
n LC

i i
L

iP='
'i

1

L

'
+i

)'iL

O

(O

'1+

1i

'1 =

iL
L

iL +

'1+iP '1+iL
1+i

)i(L=+
'11 ≠

P
+i
1+

+i P
i

Although we can solve this problem by using the Cat-
mull-Clark subdivision rules instead of the octree subdivi-
sion ones when we generate multiresolution lattices, the
lattices generated by using the Catmull-Clark subdivision
rules sometimes produce rather scattered control points
and not easy to deform. Moreover, it is almost impossible

to create high-level lattices because of its computational
cost. Therefore, we make a lookup table here to correct
the gap.

4.2. From local to global deformation

Hierarchical deformation from local to global is rather
difficult because the low-level lattices regenerated by ap-
plying the inverse operation of octree subdivision rules to
the high-level lattice may not contain whole the region to
be deformed. Therefore, we provide this kind of deforma-
tion by defining a new low-level lattice that encloses both
the model and the high-level lattice. The control points of
the high-level lattice are also deformed by the modifica-
tion of the new low-level lattice as the model. Therefore,
the user can do the global deformation even if some local
deformations are performed and vice versa.

 (a) (b)

 (c) (d)
Figure 5. Hierarchical deformation from local to
global. (a) A model with a high-level lattice. (b)
Local deformation is performed to the model. (c)
A low-level lattice is generated to enclose the
high-level lattice and the deformed model. (d)
Global deformation is performed to the model
through the low-level lattice. (The deformed high-
level lattice is not shown.)

Figure 5 shows an example of hierarchical deforma-
tion from local to global. First, a sphere model in Figure 5
(a) is performed by a local deformation with a high-level
shrink octree subdivision lattice as shown in Figure 5 (b).
Next, a new low-level lattice in Figure 5 (c) that encloses
both the high-level lattice and the deformed model is de-
fined for doing global deformation. And then, the model
is globally deformed as shown in Figure 5 (d). Since the
high-level lattice is also deformed by the low-level lattice,
it is possible to go back for the local deformation with the
deformed high-level lattice.

5. Results

Figure 6 shows a global deformation using a shrink oc-
tree subdivision lattice. The user can easily do such global
deformation by using shrink octree subdivision lattices.
Figure 7 shows a process of hierarchical deformation. The
model is first subjected to global deformation, and then
successively to local deformations without redefining the
lattices from the bounding box. Since refined lattices gen-
erated from a deformed lattice keep track of the features
of the deformed model, the user can intuitively continue
to deform the model, which is one of the main advantages
of our method.

3,p 3232××

We evaluated the performance of our FFD system by
calculating the required memory space and frame rates on
a PC with an Intel Pentium4 1.7GHz, 256MB memory,
and nVIDIA GeForce3 graphics accelerator. The results
are shown in Table 1 and Table 2. The data structure used
to keep topological information was like the loop edge
data structure (LEDS) [9], a variant of the radial-edge
data structure [12][13]. Table 1 shows that more than
20MB are required to do the Catmull-Clark subdivision
twice to N since it produces at least 32 cells.
Frame rates shown in Table 2 are estimated while the user
moves one control point of each octree subdivision lattice
to deform three polygonal models of different complexity.
The Catmull-Clark subdivision is applied to each lattice
twice during deformation. The most time consuming steps
in the deformation algorithm are the parameterization and
relocation steps. On the other hand, the time to create
multiresolution lattices is almost negligible.
Table 1: Required memory sizes of our system to
keep topological information of the Catmull-Clark
subdivision volumes.

#Catmull-Clark
subdivisions to a

cube
#cells

0 111 ××
1 222 ××
2 444 ×× 48,336
3 888 ×× 345,488
4 161616 ×× 2,601,744

323232 ×× 20,170,256

required memory
(byte)

1,296
7,376

5
Table 2: Frame rates estimated with different lev-
els of lattice and different complexities of model.

frame rate (fps) #octree subdivi-
sions to a bound-

ing box
model with

495 verti-
ces

model with
22,886
vertices

model with
53,417 verti-

ces
50.0 4.54 3.69

1 25.4 3.57 2.73
5.12 2.54 2.19

3 3.13 1.97

0

2
1.80

4 4.44 2.56 2.30
5 4.16 2.02 1.90

These data show that our system is still memory inten-
sive, and may be slower than those using other simpler
FFD methods. However, our system can still allow the
user to deform models interactively even at these frame

rates and cut through the lattice definition time from the
user. One of the main features of our method is that after
three steps of octree subdivision of the bounding box, the
frame rate for each model�s deformation doesn�t decrease
very much or even increases for further octree subdivi-
sions. This is because we apply the Catmull-Clark subdi-
vision only to the limited region of the lattice, and after
each step of octree subdivision, each cell becomes smaller
and contains less vertices of the model. For these reasons,
this method can be applied to even more complex lattices
while the computation time doesn�t depend much on their
complexity.

6. Conclusion and future work

In this paper, we have proposed an automatic lattice
generation method that allows the user to do hierarchical
deformation and a new FFD method that allows the lat-
tices to have much complexity by subdividing only a lim-
ited region of the lattices. Our implemented system is de-
signed to be easy-to-use for all users, whether beginners
or well-trained. For example, when beginners use our
system to deform a model, they just have to press buttons
until the desired details are added to the lattice and to
move some of its control points.

As the example shown in Figure 7, the user can easily
do the model deformation that needs both global and local
deformations with our method since multiresolution lat-
tices keep track of the features of the deformed model at
each level of deformation. However, if the user does de-
formation with other methods, he or she needs to define a
proper lattice at every level of deformation manually, and
it is a very time-consuming task to make the lattice fit to
the model, which our multiresolution lattices naturally
achieve.

However, although we only subdivide limited regions
of lattices, there is still a memory limitation, which allows
only a few subdivision steps. We can partly overcome this
problem by adaptively using b-spline parameterization
and Catmull-Clark subdivision. Moreover, to combine our
method with direct manipulation methods such as [4] and
[5] will makes our FFD system much more useful. We
shall be developing these and creation of more easy-to-use
lattices in our future work.

Acknowledgement

One of the authors, Jieqing Feng, is partially supported by
National Natural Science Foundation of China
(No.69903008)

References

[1] E. Catmull and J. Clark, �Recursively generated b-spline
surfaces on arbitrary topological meshes�, Computer-Aided De-
sign, Vol. 10, 1978, pp. 350-355.
[2] S. Coquillart, �Extended free-form deformation: a sculptur-

ing tool for 3D geometric modeling�, ACM Computer Graphics
(SIGGRAPH 90 Conference Proceedings), Vol. 24, No. 4, 1990,
pp. 187-196.
[3] S. Gottschalk, M. C. Lin, and D. Manocha, �OBB-Tree: a
hierarchical structure for rapid interference detection�, ACM
SIGGRAPH 96 Conference Proceedings, 1996, pp. 171-180.
[4] W. M. Hsu, J. F. Hughes, and H. Kaufman, �Direct
manipulation of free-form deformations�, ACM Computer
Graphics (SIGGRAPH 92 Conference Proceedings), Vol. 26, No.
2, 1992, pp. 177-184.
[5] S. Hu, H. Zhang, C. Tai, and J. Sun, �Direct manipulation
of FFD: efficient explicit solutions and decomposible multiple
point constraints�, The Visual Computers, Vol. 17, No. 6, 2001,
pp. 370-379.
[6] F. Lazarus, S. Coquillart, and P. Jancene, �Axial deforma-

• A face point is that defined by the weighted average:

4
10F =

points of the two

2 CAC ++ , where and are the cell

cells on either side of the face and

0C 1C

A is the face centroid.
edge point is that• defi th ghted aver-

age:
An ned by e wei

n
E avgavg=

nt defined by the average of
cells that contain the edge, A

by the average of the face cen
ain the edge,

, where is the

poi the cell s of the
 is the poi defined

cont

avgC

point
nt

troids of the faces that
avg

M is the mi
 is the number of faces that contain the edge.
vertex point is that defined by

dpoint of t and
n

• the wei ed aver-
age:

he edge,

ghtA

MnAC)3(2 −++

tions: an intuitive deformation technique�, Computer-Aided
Design, Vol. 26, No. 8, 1994, pp. 607-613.
[7] R. MacCracken and K. I. Joy, �Free-form deformations
with lattices of arbitrary topology�, ACM SIGGRAPH 96 Con-
ference Proceedings, 1996, pp. 181-188.
[8] K. T. McDonnell, H. Qin, and R. A. Wlodarczyk, �Virtual
clay: a real-time sculpting system with haptic toolkits�, In ACM
Symposium on Interactive 3D Graphics Proceedings, 2001, pp.
179-190.
[9] S. A. McMains, �Geometric algorithms and data represen-
tation for solid freeform fabrication�, PhD thesis, Department of
Computer Science, University of California, Berkeley, 2000.
[10] T. W. Sederberg and S. R. Parry, �Free-form deformation
of solid geometric models�, ACM Computer Graphics (SIG-
GRAPH 86 Conference Proceedings), Vol. 20, No. 4, 1986, pp.
151-160.
[11] K. Singh and E. Fiume, �Wires: a geometric deformation
technique�, ACM SIGGRAPH 98 Conference Proceedings, 1998,
pp. 405-414.
[12] K. Weiler, �Topological structures for geometric modeling�,
PhD thesis, Rensselaer Polytechnic Institute, 1986.
[13] K. Weiler, �The radial edge structure: a topological repre-
sentation for non-manifold geometric boundary representations�,
Geometric Modeling for CAD Application (First IFIP WG5.2
Working Conference Rensselaerville), 1998, pp. 3-36.
[14] D. Zorin, P. Schröder, T. DeRose, J. Stam, and J. Warren,
�Subdivision for modeling and animation�, ACM SIGGRAPH 99
Conference Course Notes, No. 37, 1999.

Appendix: Subdivision rules of Catmull-

Clark volumes

The Catmull-Clark subdivision volumes method is an
extension of the Catmull-Clark subdivision surfaces
method [1], which successively refines the surface occu-
pied by a set of control points. Analogously, the subdivi-
sion algorithm for volumes successively refines the 3D
space occupied by a lattice. To achieve finer representa-
tions of the original lattice, the subdivision algorithm pro-

8
V avgavgavg=

nt defined by the average of
ls that contain the control

defined by the average of the
that contain the control point,

ned by the average of the m
 radiate from the control poi

, where is the

poi the cell s of the
cel point, A e point

faces e point
defi idpoi e edges
that nt,

avgC

point
 is th

face centroids of the
 is th

s of th

avg

avgM

nt
and P is the con-

trol
At each subdivision step, cell points, face points, and

edge points are generated for all cells, faces, and edges of
the lattice respectively and old control points are replaced
by new vertex points. These new control points are recon-
nected to create a new subdivided lattice according to the
following reconnection rules: (1) each new cell point is
connected to the new face points generated for the faces
that define the old cell; (2) each new face point is con-
nected to the new edge points generated for the edges that
define the old face; (3) each new edge point is connected
to the two new vertex points that are generated for the
control points which define the old edge. NOTICE: the
new control points are only used to generate finer Cat-
mull-Clark volumes and not replace the original control
points for user�s controlling.

The control points on the boundary of the lattice are
generated in particular ways to prevent resulting space
from shrinking:
• A corner point is that contained in only one cell of

the lattice. In the refinement process, the position of
a corner point remains unchanged.

• A sharp edge is that contained in only one cell of the
lattice. The edge point of a sharp edge is the mid-
point of the edge.

• A sharp point is that joining two sharp edges. The
vertex point of a sharp point is defined by the
weighted average:

 point itself.

33 PMAC +++

duces four types of new point:
• A cell point is that defined by the average of the con-

trol points of the lattice which define the cell. 4
'2' 21 MPM

V
++

= , where '1M and '2M are the

midpoints of two sharp edges that contain the control
point, and P is the control point itself.

• nd vertex points on the bound-

ary are generated according to the Catmull-Clark
rules for surfaces [1].

All other face, edge, a

th deformed low

(a) (b) (c)

(d) (e) (f)

Figure 6. A global deformation of a dolphin model by using a low-level shrink octree subdivision lattice. The col-
ored regions in (c) and (e) represent the Catmull-Clark subdivided lattice.

(a) (b) (e)

(c) (d) (f)

Figure 7. Hierarchical deformation of a chimpanzee model. (a) Original model with a low-level lattice. (b) Deformed
model wi -level lattice. (c) Deformed model with a high-level lattice generated from that of (b). (d)
Further deformed model with deformed high-level lattice. (e) Closed up view of (b) and (c). (f) Closed up view of (d).

	Introduction
	Automatic generation of multiresolution lattices
	Octree subdivision lattices
	Extensions of octree subdivision lattices

	Deformation process using one lattice
	Property of Catmull-Clark subdivision volumes
	Deformation algorithm

	Deformation process using multiresolution lattices
	From global to local deformation
	From local to global deformation

	Results
	Conclusion and future work

