
FLoD: A Framework for Peer-to-Peer 3D Streaming
Shun-Yun Hu∗, Ting-Hao Huang†, Shao-Chen Chang∗, Wei-Lun Sung∗, Jehn-Ruey Jiang ∗ and Bing-Yu Chen‡

∗Department of Computer Science and Information Engineering
National Central University, Taiwan, R.O.C.

†Department of Computer Science and Information Engineering
National Taiwan University, Taiwan, R.O.C.

‡Department of Information Management and Graduate Institute of Networking and Multimedia
National Taiwan University, Taiwan, R.O.C.

Abstract—Interactive 3D content on Internet has yet become
popular due to its typically large volume and the limited network
bandwidth. Progressive content transmission, or 3D streaming,
thus is necessary to enable real-time content interactions. How-
ever, the heavy data and processing requirements of 3D streaming
challenge the scalability of client-server delivery methods. We
propose the use of peer-to-peer (P2P) networks for 3D streaming,
and argue that due to the non-linear access patterns of 3D
content, P2P 3D streaming is a new class of applications apart
from existing media streaming and requires new investigations.

We also present FLoD, the first P2P 3D streaming framework
that allows clients of 3D virtual globe or virtual environment
(VE) applications to obtain relevant data from other clients while
minimizing server resource usage. To demonstrate how FLoD
applies to real-world scenarios, we build a prototype system that
adapts JPEG 2000-based 3D mesh streaming for P2P delivery.
Experiments show that server-side bandwidth usage can thus be
reduced, while simulations indicate that P2P 3D streaming is
fundamentally more scalable than client-server approaches.

I. INTRODUCTION

3D streaming refers to the continuous and real-time delivery
of 3D content (e.g., meshes, textures, animations, etc.) over
networks to allow user interactions without a prior download.
Similar to audio or video media streaming [1], [2], 3D content
needs to be fragmented into pieces at a server, before it can
be transmitted, reconstructed, and displayed at the clients.
However, unlike media streaming, because users accessing 3D
content often have different visibility or interests, transmission
sequence in 3D streaming thus varies from user to user and
requires individualized visibility calculations [3].

Current 3D streaming schemes can be classified into four
main types: object streaming, scene streaming, visualization
streaming, and image-based streaming [4]. In this paper we
look at scene streaming, which usually involves a collection
of 3D objects placed arbitrarily in space that are streamed
to clients according to user visibility or interests. The goal
of scene streaming is to provide a remote walkthrough (i.e.,
navigation) or multi-user virtual environment (VE) experience
[5], where users navigate a 3D scene and possibly communi-
cate with one another in real-time (e.g., walkthrough of virtual
museums). As many more objects may exist than what a user
can see at a moment, scene streaming generally has two stages:
object determination and object transmission [6]. For the first
stage, the server employs visibility determination techniques to
cull away irrelevant objects, and uses visual quality estimates

to assign transmission priorities. For the second stage, data
reduction techniques such as progressive representations and
compressions are used to send the object pieces [7]. Scene
streaming also benefits from the reuse of cached content, so
that objects need not be sent again if re-visited later [3].

In this paper, we try to answer the question: how can 3D
scene steaming be realized for millions of concurrent users
within the same VE? Existing 3D streaming schemes adopt the
client-server architecture for content delivery. However, as 3D
streaming is both data and processing-intensive, prohibitively
vast amount of server-side bandwidth and CPU resources are
required when serving a large audience. 3D applications with
large data volume (e.g., today’s popular Massively Multiplayer
Online Games, or MMOGs [8]) thus currently require users to
obtain the content through pre-installations via CDs or prior
downloads. However, prior installations are undesirable and
even unpractical for two likely future scenarios:
Larger and more dynamic content. Today’s MMOGs have
a few GBs of relatively static content (e.g., World of Warcraft
is over 5 GB). However, as content becomes larger and
more dynamic, streaming will save both the installation and
update time. In fact, a prior installation is already unsuitable
for the social MMOG Second Life [9], which depends on
3D streaming to deliver over 34 TB of user-created models,
textures, and behavior scripts1. Also of note is that virtual
globes such as Google Earth and NASA World Wind currently
have terabytes of data (70 TB and 4.6 TB, respectively).
Extensions into 3D may only be a matter of time, as shown
by initiatives such as X3D Earth2. Pre-installation thus is
unpractical given the size of the data and the userbase (i.e., 250
million+ Google Earth downloads). In realizing such planet-
scale virtual environments3, large-scale 3D streaming could be
the basis for next-generation virtual globe applications.
Larger number of environments. As imagined by proponents
of Web 3D, the future Internet could very well be three-
dimensional where diverse environments exist to offer various
socializing, shopping, and learning experiences. If millions of
3D sites were to exist, prior installations for each one of them
would be frustratingly inconvenient and unpractical.

1http://www.informationweek.com/news/showArticle.jhtml?articleID=197800179
2http://www.web3d.org/x3d/workgroups/x3d-earth/
3https://www.technologyreview.com/Infotech/18911/

2

TABLE I
P2P STREAMING COMPARISONS

live on-demand 3D scene

starting position same arbitrary arbitrary
access pattern linear linear non-linear

trans. sequence same same (different starts) unique
group switching infrequent infrequent frequent

Scalable and efficient 3D streaming thus may be an im-
portant enabler for diverse forms of new applications. We
propose the use of peer-to-peer (P2P) networks to improve
the scalability and affordability of 3D scene streaming, based
on the observation that users navigating through a 3D scene
may own similar content due to overlapped visibility. Users
thus might obtain relevant content from one another. Although
P2P media streaming has seen significant progress in recent
years, it is not directly applicable to 3D data due to the
different access patterns. Consider that a user has left a certain
navigation path through a VE, when other users also go
through the same path with the same starting position and
speed, the data stream would be the same for everyone (i.e.,
similar to live media streaming [2]). If other users join the
path at different locations but proceed with the same speed,
the data would resemble on-demand media streaming [1]. 3D
scene streaming occurs when other users proceed on different
paths at different speeds, making the streaming sequences
individually unique.

The main difference between 3D scene streaming and media
streaming thus lies in the content access pattern due to
user behaviors. Media streaming views content as being one-
dimensional (i.e., time) and sequentially accessible, whereas
3D streaming views content as stored in a multi-dimensional
space (i.e., the x and y axis, view orientation, etc.) and ac-
cessed according to user behaviors. The content access pattern
thus is linear and more predictable for media streaming, yet
non-linear and less predictable for 3D streaming [10]. This
non-linear access pattern also makes dynamically forming and
maintaining the proper interest groups that share data to enable
P2P delivery much more challenging, as the switching between
various groups occurs more frequently than in audio or video
streaming (Table I). Novel understandings to the fundamental
problems involved and the design of new streaming techniques
thus are necessary for P2P 3D streaming.

This paper builds on our earlier work [4] to provide a
conceptual model for 3D scene streaming, and presents the
design and evaluation of FLoD (Flowing Level-of-Details),
the first P2P framework that supports 3D scene streaming
for MMOG or virtual globe applications. By separating the
graphics and the networking aspects of the problem, FLoD
also allows both fields to tackle each aspect independently.

The rest of the paper is organized as follows: A model
for P2P 3D scene streaming is first presented in Section II,
followed by FLoD’s design in Section III. To evaluate FLoD’s
applicability and scalability, Section VI and V describe a
prototype system and related simulations. Section VI discusses
related work, and conclusions are given in Section VII.

II. P2P-BASED 3D SCENE STREAMING

A. System Model and Assumptions

We consider a remote walkthrough [3], [11] scenario where
3D objects of various sizes and shapes are placed in a large
scene with specific positions and orientations. Objects are
defined by polygonal meshes and their associated data, such as
textures, light maps, animations, etc., and the information on
their placements is stored within a scene description. Each user
navigates the scene through a client program and may update
his or her current position and view orientation via movement
commands (the terms user, node, client, and peer will be used
interchangeably from now on). As there are potentially many
objects, it is neither feasible nor necessary to see or interact
with all of them at once. Each user’s visibility and interaction
thus is limited to a circular area of interest (AOI) [5] centered
at the user’s current location. For simplicity, we assume that
all objects are static in both their positions and content. In this
basic model, we also do not consider the display of other users’
3D representations (i.e., each user sees only static objects, but
not each other).

For a given 3D object, we assume that its mesh and other
data can be fragmented into a base piece and many refinement
pieces. The specific fragmentation is application-specific, but
whichever the mechanism, we assume that the user is provided
with a minimal working set of objects once the base pieces
are obtained, such that the scene can be rendered to allow
navigation. Progressive meshes [7] and techniques such as ge-
ometry image [12] may be used for mesh fragmentation, while
progressive encodings of GIF, JPEG, or PNG, may be used for
texture fragmentation [13]. Note that different fragmentation
methods impose different types of dependency requirements
among the pieces when reconstructing the objects.

All content is initially stored at a server, and clients obtain
it through streaming from either the server or other clients.
Rendering and navigation may begin as soon as base pieces
of a few objects within the AOI are obtained.

B. Requirements

From the user’s perspective, the main concern for 3D
streaming is its visual quality, which is captured by concepts
such as walkthrough quality [3] or visual perception [11].
However, as visual quality can be subjective, a more definable
concept may be the streaming quality in terms of “how much”
and “how fast” a client obtains data. For the former, one
measure is the ratio between the data currently owned and
those necessary to render a view at an instant, which we
will call fill ratio. A ratio of 100% indicates the best visual
quality, as the rendered image would be the same as if all
content is locally stored. As for the latter, we may use the
following two measures: base latency, the time to obtain the
base piece of an object, and completion latency, the time to
download the complete data of an object. Note that the two
are similar to latency time and response time in [11]. Base
latency indicates the delay for a user to see a basic view of an
object, while completion latency indicates the delay of being

3

Server-side

Object
Preprocessing

Client-side

Object Determination Object Transmission Object Reconstruction

peer & piece
selectionfragmentation

partition

cache

de-fragmentation

de-partitionprioritization

prefetching

renderingmovement

Fig. 1. A conceptual model for P2P-based 3D scene streaming.

able to fully inspect or manipulate an object. For clients, the
goal of 3D streaming thus is to optimize the streaming quality
by maximizing the fill ratio for every view and minimizing
the base and completion latency.

From the server’s perspective, the main concern is to
improve the system’s scalability by distributing processing and
transmission loads to clients as much as possible. For trans-
missions, it is preferable if most content is delivered by clients.
This can be measured by the amount of server-side bandwidth
usage. For processing, it is desirable to minimize the server’s
role in calculating user visibility and deciding the transmission
strategy. Ideally, if these calculations are delegated to clients,
then server-side processing can be conserved for answering
data requests only. For servers, the goal of 3D streaming thus
is to minimize their CPU and bandwidth usage.

C. Challenges

To meet the above requirements by utilizing client resources,
we identify three new issues to address:
Distributed visibility determination: Preferably, visibility
should be determined without the server’s involvement or any
global knowledge of the scene. However, as only the server ini-
tially has complete knowledge on object placements (i.e., the
scene descriptions), we need to partition and distribute scene
descriptions to clients so that visibility can be determined in
a distributed manner efficiently.
Dynamic group management: The key that the server’s load
may be reduced is to let clients form data exchange groups
based on common interests in the 3D data. This involves the
efficient discovery and maintenance of such interest groups
among clients. Note that as users are moving constantly, the
grouping is much more dynamic than that in media streaming.
Peer and piece selection: Once a client has known a group of
peers where common interests exist, to optimize the visual (or
streaming) quality for a given bandwidth budget, the client
should perform peer selection to contact the proper peers
and piece selection to request the proper data pieces for
object reconstructions. As there may be multiple relevant data
sources, factors such as resource capacity, content availability
and network conditions need to be considered together. In-
terestingly, as 3D streaming is view-dependent [14] and that
some data pieces may be applied in arbitrary order during
object reconstructions, 3D streaming requires only a roughly
sequential transfer order as opposed to the strictly sequential
transmissions in video or audio streaming, as long as certain
piece dependencies are satisfied.

D. Conceptual Model

Given the above requirements and challenges, we summa-
rize the main tasks for P2P 3D scene streaming as follows:
Partition: The task of dividing the entire scene into blocks
or cells so that global knowledge of all object placements
is not required for visibility determination. Scene partition is
essential if visibility calculations were to be decentralized.
Fragmentation: The task of dividing a 3D object into pieces
so that it may be transmitted over the network and recon-
structed back progressively by a client. Progressive meshes or
textures are examples of fragmentation techniques.
Prefetching: The task of predicting data usage ahead of time
and generating object or scene requests so that latency due
to transmissions is masked from users. Predications of user
movements or behaviors are often employed for this task [11].
Prioritization: The task of performing visibility determination
to generate the ordering for a client to obtain object pieces in
a scene. The goal is to produce the best streaming quality with
considerations to factors such as object distance, line-of-sight
[3], [11], or the requesting client’s bandwidth [15].
Selection: The task of determining the proper peers to connect
and pieces to obtain based on considerations of peer capac-
ity, content availability and network conditions, in order to
efficiently fulfill requests from prefetching and prioritization.

Fig. 1 organizes the above tasks into a conceptual model
for P2P-based 3D scene streaming. For an interactive 3D
application, obtaining movement updates from the user and
performing rendering are the only steps when content is locally
available. Object preprocessing, determination, transmission,
and reconstruction are the additional stages in 3D streaming.
For client-server-based 3D streaming, only fragmentation,
prefetching, and prioritization need to be considered. Partition
of the scene and the selection of peers and pieces are new
issues introduced in P2P-based 3D streaming. A summary
comparison between the two approaches is shown in Table II.

TABLE II
CLIENT-SERVER AND P2P COMPARISONS.

Architecture

Processing stage

Client-server Peer-to-Peer

partition Server(offline)

Pre-processing fragmentation Server Server

prefetching Client Client

de-partition Client

prioritization Server/Client Client

selection Client

(online)

Navigation

de-fragmentation Client Client

4

Fig. 2. Neighbors in VON: boundary(triangle) enclosing(square) both(circle)

III. DESIGN OF FLOD

A. Overview

FLoD’s main design rationale is that as users in large-scale
VEs tend to see each other or crowd at certain hotspots [8], a
node might have overlapped visibility with its AOI neighbors
(i.e., other nodes whose positions fall within the node’s AOI).
It is thus likely that the neighbors already possess relevant 3D
content. By requesting data from the neighbors first, the server
can be relieved from serving the same data repetitively. Note
that neighbors here are based on proximity on the virtual map,
not the physical network. The discovery of AOI neighbors
is in fact the discovery of the proper interest groups for
distributed content sharing, and must be done efficiently (i.e.,
the challenge of dynamic group management). Fortunately,
recent research on P2P virtual environment (P2P-VE) overlays
[8] allows information on AOI neighbors such as IDs, virtual
coordinates, and IP addresses be learned given a position and
AOI-radius, without relying on a server. As a node moves
around, it can constantly notify the overlay of its position and
get refreshed information on AOI neighbors.

Our choice for the P2P overlay is Voronoi-based Overlay
Network (VON) (Fig. 2), as it has demonstrated scalability,
consistency, and reliability [8]. VON requires each node to
connect directly with its AOI neighbors and organize them into
a Voronoi diagram. By identifying the boundary neighbors
(i.e., nodes whose Voronoi regions overlap with the AOI
boundary), a node may learn of new nodes from its boundary
neighbors as it moves around. To further constrain client-
side bandwidth usage, a node may also shrink its AOI if a
certain connection limit is exceeded [8]. Note that other P2P-
VE overlays can also be used [8], as long as correct and timely
information on AOI neighbors are provided. One benefit of
VON is that when no AOI neighbors are present, connections
with a few enclosing neighbors are still kept [8], such that
data requests to peers are still possible.

To efficiently distribute scene descriptions to clients (i.e., the
challenge of distributed visibility determination), we partition
the VE into fixed-size square cells (similar to Cyberwalk
[11]), each has a small scene description specifying the objects
within. Each 3D object is specified by a unique ID, location
point, orientation and scale within the scene description.
Determining the visible objects to retrieve can thus be done
in a fully distributed manner, as each node is able to locally

Fig. 3. Schematic of a virtual environment divided into cells.

determine the cells covered by its AOI (see Fig. 3, where
the big circle is the AOI of the star node, and triangles
are other user nodes. Various shapes are the 3D objects,
with their location points as dots. Note that cell IDs can
be calculated given the star node’s location coordinates, the
world dimensions and cell size). When entering a new area,
a client first prepares a scene request list to obtain scene
descriptions from its AOI neighbors or the server. Once scene
descriptions are obtained, the client then judges which objects
are in view and produces a piece request list to request for
visible objects. Piece dependency, if any, is also specified in
the piece request list to ensure that data retrieval adheres to
the correct piece ordering for object reconstructions. Views
are rendered progressively as data pieces arrive from either the
peers or the server (which acts as the final data source if peers
cannot fulfill the requests). This iterative process of requesting
scene descriptions and object pieces is repeated continuously
as a client moves in the VE.

To accommodate evolving policies and techniques (i.e., the
challenge of peer and piece selection), FLoD separates the
main client-side tasks into a graphics layer and a networking
layer (Fig. 4). The graphics layer performs object determi-
nation (i.e., prefetching and prioritization) and object recon-
struction (i.e., de-partition and de-fragmentation), while the
networking layer is responsible for object transmission (i.e.,
peer and piece selection). Prefetching is not yet considered in
this work, but is included for the sake of completeness. The
application sits on top of FLoD and performs the usual tasks
of taking user movement commands and performing rendering.

Fig. 4. FLoD’s client-side task flow and layers. Data flows: (A) scene request
list (B) scene descriptions (C) piece request list (D) data pieces. The numbers
are task labels in FLoD’s Procedures.

5

B. Procedures

We now describe FLoD’s main procedures in more details.
The numbers after the procedure names indicate the tasks (as
shown in Fig. 4) covered by the respective procedure:

Login: The joining node enters the VE system by specifying
a join location and AOI-radius to the P2P-VE overlay, which
returns an initial list of AOI neighbors. The VE’s dimensions
and cell size are also obtained from a gateway server. Obtain
Scene Descriptions procedure is then called.

Obtain Scene Descriptions (2, 4): The requesting node
determines the cells that its AOI covers, and uses the Request
for Data procedure to get the cells’ scene descriptions by
passing a scene request list made of cell IDs. Once the scene
descriptions are obtained and analyzed, the node requests for
3D objects with the Obtain Objects procedure.

Obtain Objects (5, 6, 7): Visibility determination produces
a prioritized piece request list, consisting of (object ID, piece
ID, depended-piece ID) tuples, for any missing visible data.
Pieces are obtained according to their priorities and depen-
dencies via the Request for Data procedure, and stored to a
cache once downloaded. A view is rendered from the cache
according to the specified location, orientation, and scale of
each object in the scene descriptions.

Request for Data (3): If the local cache does not have
the desired data, requests are sent to the data source nodes
(composed of current AOI neighbors and the gateway server),
according to certain peer selection policy. The actual data
exchanges are governed by certain piece selection policy. As
the gateway server is part of the pool, requests will eventually
go to the server if peers fail to respond.

Move (1): A node moves by sending a user-generated
position update to the overlay, which forwards the update
to other AOI neighbors. Any new neighbors discovered via
the overlay will become part of the data source nodes. If the
node enters certain new cells whose scene descriptions are
unknown, Obtain Scene Descriptions is invoked.

Logout: A node simply disconnects from all neighbors
when leaving the system. As the system is distributed, failure
or departure of any single user node will not affect the system’s
operation. Other nodes will learn about the departure from the
overlay via an updated neighbor list.

C. Policies

The above procedures describe the general steps when
browsing a 3D scene. However, specific policies are still
needed for various streaming tasks, which are discussed below:
Content Discovery: Before each peer can request data, they
must first know which neighbors possess the desired content.
Some methods include: 1) request data from neighbors si-
multaneously; 2) request data from neighbors sequentially; 3)
query the neighbors first, and send requests later. The first
option has the least latency, but is vulnerable to multiple
responses. The second option uses the least bandwidth, but
incurs more delays due to multiple attempts. We therefore
query the neighbors first, and only request the data from the
neighbors that respond positively.

Fig. 5. Screenshot of the 3D streaming client.

Peer Selection: Once a peer knows which other neighbors
possess a certain data piece, it could send a request to a
chosen peer. The choice of peer can either be random or based
on certain criteria (e.g., remote peer’s bandwidth capacity or
proximity). Our current choice is to pick neighbors randomly.
Piece Selection: For obtaining pieces, the request order need
not be strictly sequential as the piece dependencies for 3D
objects may follow that of a tree (e.g., geometry image [12])
or a forest (e.g., progressive meshes [7]). For simplicity, we
now adopt a sequential request policy for data pieces. Note
that even though individual objects are retrieved linearly, as
the set of requested objects changes constantly, the overall
content access pattern is still non-linear.
Server Request Condition: One key question for P2P delivery
is under what conditions do clients request data from the
server? The answer impacts both the number of requests to a
server, and the responsiveness for clients to obtain data. A
basic approach is to ask the server whenever other clients
cannot respond to requests. However, this could make the
server vulnerable to requests, especially when clients are
joining concurrently. We thus allow a client to request from
the server only if it becomes the nearest node to an object.
Caching: We choose a cache size that will store roughly three
times the expected amount of data within an AOI. The farthest
objects from the user’s position are replaced first when the
cache is used up.

IV. PROTOTYPE IMPLEMENTATION

To demonstrate how FLoD applies in actual scenarios, we
implement a prototype based on geometry image streaming
[12], which converts an arbitrary 3D mesh model into a 2D
image, so that progressive mesh streaming is achieved by
sending the 2D image. Fig. 5 shows a screenshot of our
3D streaming client, where two scenes are shown. In this
section, we describe the partition, fragmentation, prioritization,
selection, and object reconstruction methods used by our
prototype. Prefetching as noted earlier is not yet considered.
Partition: As publicly available large scenes are hard to find,
we use a small virtual village (a 3D Studio Max scene file)
from an actual game demo as the basic cell and convert it into
a X3D file. 3D objects are extracted from the X3D file and

6

TABLE III
PROTOTYPE LAN EXPERIMENT STATISTICS

total time (ms) send size (b) recv size (b) base latency (ms) SRR avg AOI neighbor

min. 10,188 6,376 397,074 9 0.000 0.583
max. 63,053 5,792,518 8,232,699 1,250 0.975 5.000
avg. 36,064 1,006,912 1,349,224 502 0.366 3.192

std. dev. 17,569 1,126,383 1,145,514 395 0.269 1.073

converted to geometry images [12], so that the X3D file serves
solely as the scene description. For the test scene, we duplicate
the village 100 times by translating and tilting randomly
positioned objects to fit on a larger plane, until the total data
volume approximates that of a real game scene. The original
data for a cell is 514 KB (with a scene description and models),
and the final VE is 50.5 MB. As MMOG developers often
build scenes in cell-based units [9], our approach resembles at
least in part with how MMOGs or VEs are constructed today.
Fragmentation: As the scene descriptions store only the IDs
and bounding boxes of each objects, we use JPEG 2000 to
store the geometry images of the actual models as it is a public
standard for image-based streaming. To facilitate progressive
transmissions, the images are fragmented into pieces with
JPIP [12] in the following way: 1) Resolution: as rendering
distant objects with many polygons is unnecessary, we divide
each image into several resolution levels, where only the
appropriate levels are used to render a scene. Each level,
except the highest one, represents a simplified version of the
original 3D model. 2) View-dependency: when a user looks
at the front of an object, transmission of the rear-side data
can be postponed. Each resolution level thus also divides
into blocks that correspond to different surface patches on the
reconstructed model. In our prototype, each image is divided
into 5 resolution levels. Level 0 corresponds to the base piece
and all other blocks correspond to the refinement pieces.
Prioritization: As mentioned in Section III-B, after joining the
P2P network, each node first requests the scene descriptions
to perform distributed visibility determination. After scene
descriptions are obtained, prioritization then generates a piece
request list for locally unavailable data. The intention is
to retrieve each object in its optimal resolution in respect
to the user’s perception requirements. Here we adopt the
concept of visual importance in Cyberwalk [11] for the optimal
resolution, where higher visual importance is given to objects
nearer to the viewer or closer to the center of the field of
view. However, some differences exist between our method
and Cyberwalk: 1) Since each client has the scene description,
visual importance is calculated by each client instead of the
server, reducing the server’s load. 2) The number of data
requests for a particular object is based on both bandwidth
utilization estimates and its bandwidth quota (based on the
object’s visual importance), so that more important objects
can utilize a larger share of the available bandwidth.
Selection: Once the network layer receives the piece request
list, peer and piece selections proceed to fulfill the requests.
We rely on asking the AOI neighbors to provide the relevant
3D content. For each piece on the request list, a query is

first sent to all AOI neighbors to check for data availability.
Actual requests for the data pieces are sent to a randomly
chosen neighbor that responds positively. For a given neighbor,
at most five requests can exist at a time. New requests are sent
only after previous ones have finished, so that neighbors with
higher transfer rates can service more requests. If none of the
neighbors has a desired piece, the requester will keep querying
until the server request condition (see Section III-C) is met.
Object Reconstruction: To reconstruct a model for rendering,
we expand the JPEG 2000 image from cache to a certain
resolution level according to the object’s visual importance.
When a user node moves close to the current cell’s boundary,
the node will request new scene descriptions in the nearby
cells, repeating both prioritization and selection.

V. EVALUATION

We perform two main types of evaluation for FLoD: the
first is an actual session of running the prototype on a
LAN with multiple users. Such experiment demonstrates the
feasibility of using P2P streaming to save server resources.
However, to see how FLoD works on a larger scale requires
simulations. The main purpose of the simulation is to compare
the scalability and streaming quality between a P2P and a
client-server approach to 3D streaming. In this section, we
present our performance metrics, LAN experiment, followed
by the simulation setup and simulation results regarding the
scalability, streaming quality, and limitations of FLoD.

A. Performance Metrics

We adopt the following metrics in evaluating FLoD:
Bandwidth usage: A fundamental requirement for scalable

systems is that resource usage at each system component (i.e.,
server or client) is bounded without exceeding the compo-
nent’s capacity. Otherwise an overloaded component may fail
or degrade its service quality. Bandwidth usage at all nodes and
the server thus are important indicators for system scalability.

Fill ratio: 3D streaming aims to achieve a visual quality
matching that of locally stored content. We can measure the
ratio of data volumes between the client’s obtained data and
visible data (according to the server’s storage), to estimate a
client’s capability of rendering a view.

Base latency: We define the time between the initial query
and the time a base piece becomes available at a client as base
latency. It serves as an indicator for how soon a user can start
meaningful navigation when entering a new scene.

Cache utilization: To see how cache content may be reused
to serve requests from other peers, we record the distribution
of the number of reuses for each data piece. This shows how
node density or movement models may affect cache use.

7

B. LAN Experiment

Our experiment with the prototype involves setting up a
server that loads the initial scene data onto memory, and
responds to client requests as needed. To conduct the ex-
periment, ten computers on a 100 Mbps LAN are setup
to act as clients. During a 40-minute session, users login
to the system and navigate around continuously to explore
the scenes. Statistics on 48 sessions regarding the clients’
performances are collected and shown in Table III.

As can be seen from the data, each client stays within the
scene for roughly 36 seconds per session, and has three known
neighbors on average. As clients could request data from their
neighbors, the average server request ratio (SRR) (i.e., the
ratio of the received data that comes from the server) is about
36.6%. The average upload and download transmissions of
clients are roughly the same, indicating that most clients do
well to serve other peers of their data needs.

C. Simulation Setup

A custom discrete-time simulator is used for our sim-
ulations, which proceed in time-steps of 100ms each. Up
to n nodes are put inside the simulator to process and
exchange messages with other nodes at each step, under
the following bandwidth limits: 1 Mbps download and 256
Kbps upload for typical broadband clients and a 10 Mbps
symmetric connection for the server. Constant latency is also
assumed between all nodes, where each message sent can
be received in the next step, unless the transmission time
is prolonged due to bandwidth limits. The simulator runs on
top of VAST, an implementation of the P2P-VE overlay VON
(http://vast.sourceforge.net/). To constrain bandwidth used by
the overlay, a connection limit is also set for each node so to
restrict the number of connected AOI neighbors [8].

To set up a VE, a number of objects are randomly placed on
a 2D map that is partitioned into square cells. For simplicity,
we assume that each object has only one set of data pieces.
Based on the size of the data used in our prototype, each
object is set to 15 KB, where the base piece is 3 KB and
10 refinement pieces are 1.2 KB each. The scene descriptions
are around 300 to 500 bytes each. To run the simulation, a
number of nodes are put randomly within the VE, and stay at
their joining locations until the the system’s average fill ratio
exceeds 99%. This gives each node an initial set of data to
share. The nodes then move with constant speeds, and request
scene descriptions or data pieces as needed. We adopt both a
random way-points [11] and a clustering movement model to
see how a uniform and a clustered distribution of nodes would
affect FLoD’s performance. Clustering movement is done by
randomly placing 1.5 * ln(n) hotspots (n is node size, so 100
nodes has 6 hotspots) where nodes would move towards the
nearest hotspot with high probability. All simulations proceed
for 3000 steps, which is equivalent to 300 seconds assuming
100ms per step. As we are interested in the system’s stable
state behavior, the rest of the discussions will be based on
statistics collected during each simulation’s last 2000 steps.
Specific simulation parameters are shown in Table IV.

TABLE IV
SIMULATION PARAMETERS

World dimension (units) 1000x1000
Cell size (units) 100x100

AOI-radius (units) 75
Overlay connection limit 14

Time-steps 3000
Number of nodes 100 - 1000 (in 100 increment)
Number of objects 500

Node speed (units / step) 1
Client cache size (KB) 400

D. Simulation Results

Scalability: The basic requirement for scalable systems is
that resource usages should be bounded at all relevant system
nodes. In the context of a streaming system, it means that both
the server’s and clients’ bandwidth usage should be bounded
by some limits. Fig. 6(a) shows the upload bandwidth for both
a C/S server and a FLoD server under both movement models.
As the bandwidth limit is 10 Mbps for the server, the C/S
server’s bandwidth exhausts at 1250 KB/s (i.e., 10 Mbps) when
serving over 200 nodes. On the other hand, a FLoD server’s
upload stays relatively constant below 50 KB/s (i.e., 400
Kbps). The reduction in server-side bandwidth is explained
in Fig. 6(b) and Fig. 6(c), which show the convergence of the
upload and download bandwidth of FLoD clients, indicating
that as the system scales (i.e., the number of AOI neighbors
increases), FLoD clients can become self-sufficient in mutually
serving data. On the other hand, C/S clients are rationed less
and less of the server’s bandwidth, and their download sizes
continuously decrease. Note that both random and clustering
movement models produce similar overall patterns, with the
difference that the clustering movement model utilizes less
client bandwidth (as nodes tend to stay near hotspot locations,
the demand for new content thus lessens), and produces a
more fluctuating usage pattern. The results also show that P2P
3D streaming is feasible under today’s broadband environment
given our assumed content size and user behavior.

Although FLoD significantly reduces and bounds server-
side bandwidth usage, client-side bandwidth is still consumed
logarithmically as the number of users increases, which indi-
cates that the system still has a scalability limit. However,
additional analysis reveals that the increase is mostly due
to the P2P-VE overlay, whose bandwidth usage grows log-
arithmically with node density given a connection limit [8].
Bandwidth used by FLoD in fact remains relatively constant,
which should be expected given our uniform object distribu-
tion and constant node speed (i.e., the new content required
by each node per-second remains constant on average). As
the bandwidth growth depends on user density, it means that
if it can be controlled, the total number of supportable users
can grow scalably. Note that 1000 nodes in a 1000x1000
area is already a high user-density scenario. This shows that
P2P-based 3D streaming is fundamentally more scalable than
client-server approaches by preventing both the server and
clients to become resource bottlenecks.

8

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 200 400 600 800 1000

T
ra

n
s
m

is
s
io

n
 s

iz
e
 (

K
B

/s
)

Node size

C/S Server (Random)
C/S Server (Clustered)

FLoD Server (Random)
FLoD Server (Clustered)

(a) server upload (random/cluster movement)

 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000

T
ra

n
s
m

is
s
io

n
 s

iz
e
 (

K
B

/s
)

Node size

FLoD client upload
FLoD client download

FLoD client download (without overlay)
C/S client download

C/S client upload

(b) client upload/download (random movement)

 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000

T
ra

ns
m

is
si

on
 s

iz
e

(K
B

/s
)

Node size

FLoD client upload
FLoD client download

FLoD client download (without overlay)
C/S client download

C/S client upload

(c) client upload/download (cluster movement)

Fig. 6. Bandwidth usage comparisons (average transmission size per node per second).

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000

Fi
ll

ra
tio

 (%
)

Node size

FLoD (clustered)
FLoD (random)

Client-server (Clustered)
Client-server (random)

(a) fill ratio

 0

 1

 2

 3

 4

 5

 0 200 400 600 800 1000

B
as

e
la

te
nc

y
(s

ec
on

de
s)

Node size

FLoD (clustered)
FLoD (random)

Client-server (Clustered)
Client-server (random)

(b) base latency

 0

 20

 40

 60

 80

 100

 0 5 10 15 20

%

Number of reuse

500 Nodes (Random)
1000 Nodes (Random)
500 Nodes (Clustered)

1000 Nodes (Clustered)

(c) cache utilization distribution

Fig. 7. Streaming quality comparisons and cache utilization.

Streaming Quality: We use fill ratio and base latency to
measure the streaming quality of the system. Fig. 7(a) shows
the fill ratio for both C/S and FLoD clients. After an initially
high fill ratio (while the server still has bandwidth), the ratio
of C/S clients drops at 200 nodes (i.e., 73.72% for cluster-
ing, and 48.36% for random movement), and then declines
continuously. On the other hand, a FLoD client’s fill ratio is
relatively stable regardless of node size (i.e., over 94% for
both movements). The degrade in the service quality for C/S
clients is also seen from Fig. 7(b), where the base latency is
initially lower than FLoD clients at 100 nodes, but increases
significantly afterwards. On the other hand, FLoD clients’ base
latency is relatively stable at below 600ms. We also look at
how well the cache at each client is utilized to support other
peers. Fig. 7(c) shows that cache is better utilized for denser
nodes (at 50% utilization) and for random movements.

Limitations: FLoD assumes that clients can obtain data from
neighbors with shared visibility, an interesting question thus
is what happens if AOI neighbors do not exist? To answer, we
perform another set of simulations with random movement to
observe how the server request ratio might change as node
size varies from 2 to 512, while fixing all other parameters.
Fig. 8(a) shows how server request ratio may decrease as node
density (and hence the number of AOI neighbors) increases.
When few AOI neighbors exist, most requests will go to the
server and be fulfilled in client-server fashions. This shows that
FLoD needs sufficient AOI neighbors to function properly.

Even when AOI neighbors exist, what happens if the amount
of data required exceeds what the peers can provide? In

another experiment with 500 nodes and random movement,
we downgrade clients’ upload from 64 KB/s to 48, 32, 16 and
8 KB/s (i.e., 512, 384, 256, 128, 64 Kbps, respectively). Note
that by lowering the upload capacity, we are looking at the
effect of data density on FLoD. Fig. 8(b) shows that the fill
ratio remains high till 32 KB/s (i.e., 256 Kbps), but decreases
as the client upload gets smaller. This indicates that the peers’
uploads must exceed the amount of data needed by peers,
otherwise either the server would receive excessive requests,
or the service quality for peers would degrade.

In another set of 500-node / random movement simulations,
we see how cache size affects the streaming quality and
bandwidth usage by varying cache sizes between 0.5 to 5 times
of the expected content in an AOI (estimated to be 132 KB on
average). Fig. 8(c) reveals that the fill ratio degrades and the
server’s bandwidth usage surges if the cache is less than one
AOI’s content. The cache is adequate if it is twice the AOI
content, but fill ratio and bandwidth usage improve only little
beyond that, indicating that excessive cache is not necessary.

VI. RELATED WORK

Schmalstieg and Gervautz [16] first introduce scene stream-
ing where a server determines and transmits visible objects at
different level-of-details (LODs) to clients. Subsequent work
replaces discrete LODs with continuous (smooth) LODs [17].
Teler and Lischinski used pre-rendered image-based impostors
as the lowest LOD to allow faster initial visualizations [3].
Cyberwalk [11] adopts progressive meshes to avoid the data
redundancy from multiple LODs, and focuses on caching and
prefetching to enhance visual perceptions. Deb and Narayanan

9

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 10 100 1000

S
er

ve
r r

eq
ue

st
 ra

tio
 (%

)

Node size

Scene descriptions
Pieces

(a) effect of node density

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50 60 70
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

T
ra

n
s
m

is
s
io

n
 s

iz
e
 (

K
B

/s
)

F
ill

 r
a
ti
o
 (

%
)

Client upload limit (KB/s)

FLoD server upload
FLoD client upload

Fill Ratio

(b) effect of upload capacity

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

T
ra

n
s
m

is
s
io

n
 s

iz
e
 (

K
B

/s
)

F
ill

 r
a
ti
o
 (

%
)

Cache size (multiples of AOI’s expected content)

FLoD server upload
FLoD client upload

Fill ratio

(c) effect of cache size

Fig. 8. Limitations of FLoD.

propose a geometry streaming system that maintains interactive
frame-rate by adaptive data selection [15]. Social MMOGs
such as ActiveWorlds, There.com, and Second Life [9] utilize
scene streaming to support dynamic content, but little is known
on their mechanisms. Our work complements the above work
with distributed deliveries. Mayer-Patel and Gotz present the
concept of non-linear media streaming [10] where interactive
content (e.g., images for a virtual museum) is divided and sent
through some multicast channels subscribed by clients. The
system scales by using application-layer multicast. However,
ensuring proper content partition and bounded latency (impor-
tant for interactive applications) are non-trivial. FLoD consid-
ers actual 3D content, delivers only the content that users need,
and performs content discovery with bounded delay. Level-of-
detail description tree [18] is introduced recently to determine
visibility for hierarchically-organized urban scenes. A few peer
selection strategies based on proximity or estimated content on
peers are also evaluated. However, its performance as user size
scales has not yet been reported.

VII. CONCLUSION

We have formulated a conceptual model for P2P-based 3D
scene streaming by identifying its main tasks and presented
the first related framework where a P2P-VE overlay is used to
discover neighbors for content exchange. We show FLoD’s
feasibility with a prototype, and how bandwidth usage is
bounded to achieve scalability. An open source implementation
of FLoD is available at: http://ascend.sourceforge.net/.

A number of directions exist for future work, for example,
the current design requires sufficient AOI neighbors, yet nodes
beyond AOI may also possess relevant content that can be
considered as sources. We assume linear piece dependency,
yet non-linear dependency may provide better download par-
allelism. We also have not investigated prefetching in depth,
but it is essential for any streaming scheme to be effective.

Real-time 3D content has yet found a way to most Internet
users in spite of years of efforts. While challenges remain
in areas such as format standards and the ease of content
creations, content streaming may effectively address the de-
livery problem. 3D streaming on P2P networks thus is a topic
of interest to both graphics and networking professionals. By
identifying the basic issues, we hope to generate interests in
this promising direction for more accessible 3D content.

ACKNOWLEDGMENTS

This work was supported by NSC, Taiwan, R.O.C. under
95-2221-E-008-048-MY3 and 95-2221-E-002-273-MY2. We
thank Prof. Shing-Tsaan Huang for his supports, Nein-Hsien
Lin for the 3D client, Guan-Yu Huang for the prototype
server, and Actainment Co. (http://www.actainment.com/) for
the game scene. We are also grateful of the facilities by LSCP,
Academia Sinica, the National Center for High-performance
Computing, and comments by the anonymous reviewers.

REFERENCES

[1] Y. Cui, B. Li, and K. Nahrstedt, “ostream: asynchronous streaming
multicast in application-layer overlay networks,” IEEE JSAC, vol. 22,
no. 1, pp. 91–106, 2004.

[2] N. Magharei and R. Rejaie, “Prime: Peer-to-peer receiver-driven mesh-
based streaming,” in Proc. INFOCOM, 2007, pp. 1415–1423.

[3] E. Teler and D. Lischinski, “Streaming of complex 3d scenes for remote
walkthroughs,” CGF (EG 2001), vol. 20, no. 3, 2001.

[4] S.-Y. Hu, “A case for 3d streaming on peer-to-peer networks,” in Proc.
Web3D, 2006, pp. 57–63.

[5] S. Singhal and M. Zyda, Networked Virtual Environments: Design and
Implementation. ACM Press, 1999.

[6] J. Sahm, I. Soetebier, and H. Birthelmer, “Efficient representation and
streaming of 3d scenes,” C & G, vol. 28, no. 1, pp. 15–24, 2004.

[7] H. Hoppe, “Progressive meshes,” in Proc. SIGGRAPH, 1996.
[8] S.-Y. Hu, J.-F. Chen, and T.-H. Chen, “Von: A scalable peer-to-peer

network for virtual environments,” IEEE Network, vol. 20, no. 4, pp.
22–31, 2006.

[9] P. Rosedale and C. Ondrejka, “Enabling player-created online worlds
with grid computing and streaming,” Gamasutra Resource Guide, 2003.

[10] K. Mayer-Patel and D. Gotz, “Adaptive streaming for nonlinear media,”
IEEE Multimedia, vol. 14, no. 3, pp. 68–83, 2007.

[11] J. Chim, R. W. H. Lau, H. V. Leong, and A. Si, “Cyberwalk: A web-
based distributed virtual walkthrough environment,” IEEE TMM, vol. 5,
no. 4, pp. 503–515, 2003.

[12] N.-S. Lin, T.-H. Huang, and B.-Y. Chen, “3d model streaming based on
jpeg 2000,” IEEE TCE, vol. 53, no. 1, 2007.

[13] J.-E. Marvie and K. Bouatouch, “Remote rendering of massively tex-
tured 3d scenes through progressive texture maps,” in Proc. VIIP, 2003,
pp. 756–761.

[14] J. Kim, S. Lee, and L. Kobbelt, “View-dependent streaming of progres-
sive meshes,” in Proc. SMI’04, 2004, pp. 209–220.

[15] S. Deb and P. J. Narayanan, “Design of a geometry streaming system,”
in Proc. ICVGIP, 2004, pp. 296–301.

[16] D. Schmalstieg and M. Gervautz, “Demand-driven geometry transmis-
sion for distributed virtual environments,” CGF (EG 1996), vol. 15,
no. 3, pp. 421–433, 1996.

[17] G. Hesina and D. Schmalstieg, “A network architecture for remote
rendering,” in Proc. DIS-RT, 1998, p. 88.

[18] J. Royan, P. Gioia, R. Cavagna, and C. Bouville, “Network-based
visualization of 3d landscapes and city models,” IEEE CG&A, vol. 27,
no. 6, pp. 70–79, 2007.

