
画像中のキャラクタの３次元化とそのアニメーション

陳　炳宇†,†† 戴　士強†

蕭　淳澤† 西田友是††

本稿では、我々はユーザがモーション・データ付きの３次元キャラクタ・モデルを利用することに
よって２次元の絵の中でのキャラクタを３次元空間でアニメーションできるシステムを提案する。こ
のスケルトン付きの３次元キャラクタ・モデルは、２次元キャラクタのシルエットにフィティングさ
れて、テンプレート・モデルとして使用される。２次元キャラクタ・イメージと３次元テンプレート・
モデルの間に対応するポイントを指定する後、本システムはテンプレート・モデルをキャラクタ・イ
メージにフィティングする。さらに、キャラクタ・イメージのカラーとパターンをテンプレート・モデ
ルのテクスチャとして転送する。最終的に、ユーザは、３次元モーション・データを利用することに
よって、３次元空間でフィティングされた３次元キャラクタ・モデルをアニメーションできる。我々
のモデル・フィティング法はキャラクタ・モデルと剛体物とも適応できるので、２次元の絵の中での
静的な物体も３次元モデルに変換できる。

Creating and Animating 3D Characters From an Image

Bing-Yu Chen,†,†† Shih-Chiang Dai,† Chun-Tse Hsiao†
and Tomoyuki Nishita††

In this paper, we present a system that allows the user to animate a character in a picture
in 3D space by applying an existed 3D character model with motion data. The 3D character
model with skeleton rigged is used as a template model to fit the silhouette of the character
in the picture. After assigning some corresponding points between the 2D character image
and 3D template character model, the system then fits the model to the image and transfer
the colors and patterns of the image to the model as the textures. Finally, the user can apply
any motion data to animate the fitted 3D character model in 3D space. Our model fitting
algorithm is general to be used for character models and rigid-body objects, so not only the
character in the picture but also the static objects can be converted to be 3D models.

1. Introduction

To create a 2D character animation, tradition-

ally, requires the artist to draw each frame manu-

ally. In 3D case, it also costs hard labor modeling,

skeleton rigging, motion data applying or manu-

ally animating, etc. In recent years, many tech-

niques are developed to deform or animate a 2D

character image while preserving its rigidity by tri-

angulating it into meshes or representing it as grids.

However, to build a 3D character model from a 2D

character image is still a very difficult task due to

lack of 3D information. Hence, in this paper, we

† 国立台湾大学
National Taiwan University

†† 東京大学
The University of Tokyo

present a system that allows the user to generate a

3D character model from a 2D character image and

animate it in 3D space by applying an existed 3D

character model with motion data. Therefore, the

depth information can be estimated by the existed

3D model.

Our system can use a 3D character model with

skeleton rigged by the artist, or the one automat-

ically generated by1). What the user needs to do

is just to cut out the silhouette of the character

in the picture, and assign some corresponding fea-

ture points between the 3D character model and

2D character image, our system then does the rest

tasks. The occlusion problem can be solved by the

same approach, but the character is needed to be

separated to some parts as2). With an easy-to-use

user-interface, our system can help the user to an-

imate a character more easily both in 2D and 3D

cases.

2. Related Work

There are many interesting ideas proposed to an-

imate a still picture. Chuang et al.3) presented an-

imating pictures by using stochastic motion tex-

tures. They animate passive elements, such as wa-

ter and trees, that are subject to natural forces like

wind. Hornung et al.8) took an image and motion

data as the input and animated the character in the

image. Although their work is similar to ours, the

character’s moving direction cannot be changed,

since they did not reconstruct 3D information for

the character. Chen et al.2) generated 3D charac-

ter models from user-provided 2D sketches, which

allow the user to add illumination and perspective

texturing effects to a 2D cel animation.

Igarashi et al.10) proposed an as-rigid-as-possible

shape manipulation algorithm, which allows the

user to move and deform a 2D shape (charac-

ter) without manually establishing the skeleton or

freeform deformation domain beforehand. Since

the performance of their method is good with a

friendly user-interface and the algorithm itself is

very simple to be integrated with other methods,

many systems based on it has been presented. Most

of them handle only planar motion since they do

not have depth information in a single image, which

is what we want to solve in this paper. Our goal

is to achieve the same quality and performance as

such systems while reconstructing reasonable depth

information for the characters.

3. Overview

The input of our system is an image and a skele-

ton rigged 3D character model. The contour of the

character in the image is first cut out by the user

with some segregation tools11),14),16), and the re-

gion after cutting out the character can be com-

pleted by some inpainting methods4),15). If occlu-

sion occurs between some different parts, the user

needs to provide the contour of each part sepa-

rately. The system first samples some points on the

contour as the vertices in 3D space, and the points

form a close loop as a ”contour loop” C. The pose

of the input 3D character model may also need to

be adjusted if it differs too much from the pose of

the character image. Then, the system roughly gen-

erates silhouette vertices7), which also form a close

loop as a ”silhouette loop” S.

Then, some corresponding feature points between

the silhouette loop and the contour loop are as-

signed by the user. The system then fits the silhou-

ette of the character model to the contour points

(Sec. 4.1). Let the silhouette vertices be the han-

dles, the method inspired from10) is applied to de-

form the character model while preserving its rigid-

ity (Sec. 4.2). The skeleton of the character model

is then also fitted according to the barycentric co-

ordinate (Sec. 4.3). The z value of the vertices of

the character model is adjusted according to the av-

erage distance between the silhouette vertices and

the skeleton (Sec. 4.4). After the character model

is fitted to the character image, the colors of the

character image are transferred to be the textures

of the character model (Sec. 4.5). Finally, we can

apply any motion data to the character model or

add any visual effect such as shadow or light trans-

port in 3D space.

4. Model Fitting

4.1 Silhouette Fitting

Given a contour loop C extracted from the in-

put character image and a silhouette loop S =

{si|i = 1, · · · , n}, sn = s1 with n silhouette ver-

tices of the character model, we have to match the

silhouette loop with the contour loop. The user

first drag m ≤ n vertices of the silhouette loop

S′ = {sp(j)|j = 1, · · · ,m} ⊆ S, sp(m) = sp(1) = s1

to their corresponding points of the contour loop C

manually, where p(j) = i denotes an index mapping

from the dragged vertices sp(j) to the silhouette ver-

tices si, and the first vertex of S and S′ is treated as

the same one for easy explanation, i.e., sp(1) = s1.

Then, the system fits the remaining n −m silhou-

ette vertices to C automatically while satisfying the

constraint: sisi+1 = sp(j)sp(j+1)/(p(j + 1) − p(j)),
p(j) ≤ i ≤ p(j + 1), Hence the remaining vetices

of the silhouette loop are distributed uniformly to

the contour loop C with equal length between every

pair of the vertices in subinterval formed by S′.

(a) (b)

図 1 シルエット・フィッティング
Fig. 1 Silhouette fitting. (a) Some feature points (red

points) are specified to match the contour loop C

by the user. (b) The remaining vertices of the sil-

houette loop S are then automatically fitted to C

by the system.

Fig. 1 demonstrates the silhouette matching. The

yellow line loop is the contour loop C extracted

from the input character image, the blue line loop

is the silhouette loop S. The red points are the user

specified vertices S′ and have been dragged to their

corresponding positions on the contour loop.

4.2 Skin Fitting

After fitting the silhouette loop to the contour

loop, we have to deform the shape of the template

character model T to match that of the original

character image I while satisfying the constraint

(i.e., S′) we have set in Sec. 4.1. In the view space

with the same camera parameter in Sec. 4.1, we can

first keep the z coordinate fixed and only consider

the 3D template character model T as a 2D trian-

gular mesh Txy. Then, as-rigid-as-possible shape

manipulation method10) is used for deforming the

2D triangular mesh Txy with constrained mesh ver-

tices.

The as-rigid-as-possible shape manipulation algo-

rithm has following steps: Txy ⇒ I ⇒ F ⇒ D. In

Txy ⇒ I, an intermediate shape I is determined for

the given vertex constrains (i.e., S′ in our case) by

a Laplace-based deformation. Then, the template

mesh faces Txy are fitted to the faces in I rigidly

with just translation and rotation, and result in dis-

connected mesh F . Finally, we can attain the result

transformed mesh D by averaging the correspond-

ing vertex positions in F . Note that the last two

(a) (b)

図 2 スキン・フィッティング
Fig. 2 Skin fitting. (a) The silhouette loop S has been

fitted to the contour loop C. (b) The skin of the

template character model T has been fitted by as-

rigid-as-possible shape manipulation method10).

steps are only for minimizing the scaling error. In

our case, we do not need to preserve scaling after

skin fitting since we use this method to fit differ-

ent models, not to deform a model for animation.

Based on this criteria, we simply discard the steps

I ⇒ F ⇒ D but use Txy ⇒ I only. Through a

sparse linear solver, we can fit the remaining ver-

tices of Txy within a second. After fitting the skin

(only x − y coordinates) of the template character

model T as in Fig. 2, we still have to fit the original

skeleton of T corresponding to the fitted skin.

4.3 Skeleton Fitting

In this step, we have to fit the skeleton to the ap-

propriate position related to the fitted skin. Before

skeleton fitting, we first project the mesh and skele-

ton joints of the template character model T onto

x − y plane (i.e., Txy), and record each joint posi-

tion by barycentric coordinate of the triangle which

contains the joint. If there exists several triangles

contain the same joint, we choose the one nearest

to the joint in the original 3D space and belongs

to that bone. Fig. 3 shows the skeleton before and

after fitting to the skin of the template character

model T .

4.4 Thickness Adjustment

After fitting the skin and skeleton, we have trans-

formed the original template character model T to

fit the character image I by adjusting its projected

x− y coordinates in 2D space (i.e., Txy). However,

the quantity of the third (z) coordinate (or thick-

(a) (b)

図 3 スケルトン・フィッティング
Fig. 3 Skeleton fitting. (a) The skeleton before

adjustment. (b) The skeleton after adjustment.

ness) must also be revised to generate a convincing

fitted 3D character model.

In our experience, we observed that the distance

between the bone and the skin is highly correlated

to the average distance between the silhouette ver-

tices si ∈ S and the bone bk ∈ B they belong to.

Hence, for each bone bk we record the average dis-

tance dk to its nearest silhouette loop S before the

model fitting. If the vertex si belongs to several

bones, we compute the average with its bone weight

ωik as dk =
∑n−1

i
ωikdik/(n− 1), dik = ||si − bk||,

where n is the number of si ∈ S and ωik = 0 if si

and bk have no binding relationship.

After skin fitting, we can then compute the new

average distance d′k by using the new position of si.

Then, the new z value of each vertex is scaled by

the ratio:
∑

k
ωvk(d′k/dk), where ωvk is the binding

weight between the vertex v ∈ T and the bone bk.

As shown in Fig. 4, the head and leg parts become

more reasonable after thickness adjustment.

4.5 Texture Completion

With one single image, it is very difficult to ob-

tain the texture information. Hence, we assume

that the texture of the back side can be usually

mirrored from the front side except the head part,

and directly complete the lost texture information

by just mirroring. The backside of the head part is

usually the hair, so we complete it by extend the

boundary of the front side of head part. If there

are still some artifacts, our system allows the user

to modify it manually.

(a) (b)

図 4 厚さの調整
Fig. 4 Thickness adjustment. (a) The original thickness of

the 3D fitted character model. (b) The thickness

after adjustment.

5. Result

Our system is implemented in C++ with

OpenGL, and the character deformation is per-

formed by following the standard linear blend skin-

ning (LBS) method. The motion data used in this

paper is downloaded from http://mocap.cs.cmu.edu/.

Fig. 5 and 6 show the results. The computation

time is interactive except inpainting and silhouette

cut out. The user interaction time is about 10 min.

for a trained user.

6. Conclusion and Futurework

The main advantages of our method are as the

following:

• modeling UI: Our system is much easier

than the previous stroke-based methods such

as9),12), since the user can take a character im-

age as a reference. Moreover, a nice template

model can help us to preserve the features in-

stead of just smoothing the surface.

• rendering: Since the fitted character model

has 3D information, we can easily apply any

visual effect such as shadow or light transport

in 3D space.

• animation: The fitted character model is

rigged with skeleton, so we can easily deform

it by applying motion data with good quality

and effectiveness.

There are two major limitations of our method.

Due to lack of depth information, our animation

(a) (b) (c) (d)

図 5 結果
Fig. 5 (a) The original input image. (b) The template character model after fit-

ting the character image. (c) The character model textured by the character

image. (d) The motion data is applied to animate the character model.

(a) (b) (c) (d)

図 6 結果
Fig. 6 (a) The original input image. (b) The template character model after fit-

ting the character image. (c) The character model textured by the character

image. (d) The motion data is applied to animate the character model. Be-

sides the character in the input image, a rectangular parallelepiped is also

used to fit the books in the image to let the character model ”stand” on the

books.

looks weird from side view and the texture has some

critical distortions around the silhouette edge. It

is very difficult to estimate the depth information

with only a picture. We may justify it by more in-

formation, such as providing another picture from

side view. Currently, the texture distortion is re-

fined by the user. Some texture synthesis algo-

rithms5),6) may be applied to refine it automati-

cally. Furthermore, one can apply some automatic

pose estimation algorithms, such as13), to reduce

the complexity of user-interface.

謝辞 This work was partially supported by the

Interchange Association, Japan and National Sci-

ence Council of Taiwan under NSC95-2221-E-002-

273 and NSC97-2918-I-002-028.

参 考 文 献

1) Baran, I. and Popović, J.: Automatic rigging

and animation of 3D characters, ACM Trans-

actions on Graphics, Vol.26, No.3, p.72 (2007).

(SIGGRAPH 2007 Conference Proceedings).

2) Chen, B.-Y., Ono, Y. and Nishita, T.: Char-

acter Animation Creation using Hand-drawn

Sketches, The Visual Computer, Vol.21, No.8-

10, pp.551–558 (2005). (Pacific Graphics 2005

Conference Proceedings).

3) Chuang, Y.-Y., Goldman, D.B., Zheng, K.C.,

Curless, B., Salesin, D.H. and Szeliski, R.: An-

imating pictures with stochastic motion tex-

tures, ACM Transactions on Graphics, Vol.24,

No.3, pp.853–860 (2005). (SIGGRAPH 2005

Conference Proceedings).

4) Drori, I., Cohen-Or, D. and Yeshurun,

H.: Fragment-based image completion, ACM

Transactions on Graphics, Vol. 22, No. 3, pp.

303–312 (2003). (SIGGRAPH 2003 Conference

Proceedings).

5) Efros, A.A. and Leung, T.K.: Texture Syn-

thesis by Non-Parametric Sampling, Proceed-

ings of 1999 IEEE International Conference on

Computer Vision, Vol.2, pp.1033–1038 (1999).

6) Fang, H. and Hart, J. C.: Detail preserv-

ing shape deformation in image editing, ACM

Transactions on Graphics, Vol.26, No.3, p.12

(2007). (SIGGRAPH 2007 Conference Pro-

ceedings).

7) Hertzmann, A.: Introduction to 3D Non-

Photorealistic Rendering: Silhouettes and Out-

lines, ACM SIGGRAPH 1999 Conference

Courses, pp.7–11–7–14 (1999).

8) Hornung, A., Dekkers, E. and Kobbelt, L.:

Character animation from 2D pictures and 3D

motion data, ACM Transactions on Graphics,

Vol.26, No.1, p.1 (2007).

9) Igarashi, T., Matsuoka, S. and Tanaka, H.:

Teddy: a sketching interface for 3D freeform de-

sign, ACM SIGGRAPH 1999 Conference Pro-

ceedings, pp.409–416 (1999).

10) Igarashi, T., Moscovich, T. and Hughes, J.F.:

As-rigid-as-possible shape manipulation, ACM

Transactions on Graphics, Vol. 24, No. 3, pp.

1134–1141 (2005). (SIGGRAPH 2005 Confer-

ence Proceedings).

11) Li, Y., Sun, J., Tang, C.-K. and Shum, H.-Y.:

Lazy snapping, ACM Transactions on Graph-

ics, Vol. 23, No. 3, pp. 303–308 (2004). (SIG-

GRAPH 2004 Conference Proceedings).

12) Nealen, A., Igarashi, T., Sorkine, O. and

Alexa, M.: FiberMesh: designing freeform sur-

faces with 3D curves, ACM Transactions on

Graphics, Vol. 26, No. 3, p. 41 (2007). (SIG-

GRAPH 2007 Conference Proceedings).

13) Parameswaran, V. and Chellappa, R.: View

Independent Human Body Pose Estimation

from a Single Perspective Image, Proceedings

of 2004 IEEE Computer Society Conference

on Computer Vision and Pattern Recognition,

Vol.2, pp.16–22 (2004).

14) Rother, C., Kolmogorov, V. and Blake, A.:

”GrabCut”: interactive foreground extraction

using iterated graph cuts, ACM Transactions

on Graphics, Vol.23, No.3, pp.309–314 (2004).

(SIGGRAPH 2004 Conference Proceedings).

15) Sun, J., Yuan, L., Yuan, L., Jia, J. and

Shum, H.-Y.: Image completion with structure

propagation, ACM Transactions on Graphics,

Vol.24, No.3, pp.861–868 (2005). (SIGGRAPH

2005 Conference Proceedings).

16) Wang, J., Agrawala, M. and Cohen, M.F.: Soft

scissors: an interactive tool for realtime high

quality matting, ACM Transactions on Graph-

ics, Vol. 26, No. 3, p. 9 (2007). (SIGGRAPH

2007 Conference Proceedings).

