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The human ear is highly sensitive and accessible, making it especially suitable for being used as an interface
for interacting with smart earpieces or augmented glasses. However, previous works on ear-based input mainly
address gesture sensing technology and researcher-designed gestures. This paper aims to bring more understand-
ings of gesture design. Thus, for a user elicitation study, we recruited 28 participants, each of whom designed
gestures for 31 smart device-related tasks. This resulted in a total of 868 gestures generated. Upon the basis of
these gestures, we compiled a taxonomy and concluded the considerations underlying the participants’ designs
that also offer insights into their design rationales and preferences. Thereafter, based on these study results, we
propose a set of user-defined gestures and share interesting findings. We hope this work can shed some light on
not only sensing technologies of ear-based input, but also the interface design of future wearable interfaces.
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1 INTRODUCTION
Thanks to the advances of technologies, wearable devices have become compact yet powerful.
However, in consideration of the wearer’s physical and social comfort, such devices remain small
limiting the ability of users to input interactions. To address this issue, researchers have proposed
instrumentalizing areas on the human body (e.g., the finger, limbs, or the face) for use as interactive
spaces, as the skin and its surrounding space provide a larger input area and are very easily accessible.
In addition, such interfaces allow users to communicate with wearable devices without the necessity
of sight, in an “eyes-free” manner [14, 16, 18], making them especially usable in mobile scenarios.

Among many areas of the body, the human ear is appealing for use as seen from commercially
popular, head-worn devices, such as smart earpieces or augmented glasses. Compact and integrated
devices are possible because the ears are close to these devices and the area on or around the ears are
used as input space. Furthermore, the human ear contains rich form factors. Previous works have
shown that rich, eyes-free mobile interactions can be enabled by the use of touching the ears, applying
midair gestures around the ears [18], or deforming the auricles [14]. They also showed that human
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proprioception enables users to have on-body interactions without a visual interface. The ears and
fingers provide natural tactile feedback for touch-based input, allowing for eyes-free interactions that
do not interfere with social activities. The ears are easily accessible for single-handed or bimanual
interaction. These studies made good use of the ear’s specific affordances and focused on hardware
development. Nevertheless, there is limited research that focuses on exploring intuitive gestures for
ear-based input. To better understand how users’ physical- and social-comfort is impacted when
interacting with smart devices via ear-based input, we conducted a user elicitation study from which
results we compile a set of user-defined gestures.

We correlated 31 frequently used tasks on smart devices. These tasks include visual-necessary
tasks for which users need to see the target when executing the tasks, and non-visual-necessary
tasks that users can perform without visual feedback. We recruited 28 participants to design unique
gestures for every task without any constraint on the interaction method, such as gestures with or
without touching or even deforming (i.e., physically manipulating the shape of the ear by touch)
the ear. They also rated their gestures on a continuous numeric rating from 1 to 7, with 1 indicating
“strongly disagree” and 7 “strongly agree”, according to suitability, usability, and social comfort. In
summary, 31 × 28 = 868 gestures were gathered together in the elicitation study. We collected data
and analyzed all gestures and subjective feedback through video records and transcripts of post-study
interviews. We then compiled a taxonomy of the gestures and propose a set of user-defined gestures
for ear-based input space. The design rationales, preferences, and the insights gained from this study
are also discussed.

This study’s contributions include: (1) a structured exploration of ear-based input by conducting a
user elicitation study, (2) a taxonomy analysis to better understand how participants map versatile
input methods for certain types of tasks, (3) a user-defined gesture set that allows future researchers to
consider the sensing technologies needed for their devices, and (4) the observations and discussions
from participants’ feedback during the study.

2 RELATEDWORK
2.1 On-Body Input
With our environment full of computer technology, we can often find ourselves in scenarios in
which we cannot, or prefer not, to interact with a physical device in hand. Thus, many researchers
have contributed to improve technology and discover new implementations to support device-free
interaction. Saponas et al. [30] uses a forearm EMG to detect human muscular movement in real-time,
and make finger interactions possible. Later, Matthies et al. [19] also proposed Botential, which can
recognize the location of the tap gesture on any point of the entire body through EMG. Moreover,
SkinTrack [49] is a wearable system implemented through emission of a continuous high-frequency
AC signal, and a sensing wristband with multiple electrodes that enables continuous touch tracking
on the skin. OmniTouch [8] is a wearable depth-sensing and projection system that enables users
to expand the interactive areas on any surface of the users’ body. The Magic Finger [47] uses an
optical mouse sensor and a micro RGB camera to similarly afford touch input anytime and anywhere
through a small device worn on a finger.

In consideration of social acceptance, Rekimoto et al. [27] created GestureWrist and GesturePad
that were designed to be unobtrusive and used within various social contexts. GestureWrist is a
wristband-type input device that can recognize forearm movements and hand gestures, and all sensing
elements are hidden in a normal wristband. GesturePad is a sensing module which can be attached
to the inside of clothes and allows users to interact with it from the outside. When it comes to
microgesture, DigitSpace [9] utilizes thumb-to-fingers interfaces, which support one-handed and
eyes-free input while wearing touch widgets on the fingers, and enables easy access via a stylus
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thumb. NailO [11] is an input device in the form of a nail sticker that works as a trackpad that can be
customized and is removable exhibiting a good combination of on-body and fashion accessories.

Sensing technology at and around the ear has been explored in previous research. For instance,
EarFieldSensing [20] and CanalSense [1] present a facial-gesture and head-gesture recognition
system with an in-ear placed sensing system. Ashbrook et al. [3] present instrumentation behind the
ears that uses a bone-conductive microphone to sense bites. Several approaches have been proposed
to enable on-body input at different points on the body. Although these alternatives were designed
with the users’ needs in mind, they mainly focus on the sensing technologies of the system.

2.2 Interaction with the Ears
Earphones are widely used in our daily lives due to their small size and wearability. Some commercial
earphones are not only being used in a role as a music player but also have adopted the use of sensors
that allow users to operate connected smartphones in a hands-free manner, such as the Sony Xperia
Ear and the Apple Airpods. Some previous works have focused on interactions around the ear.
Schwarz et al. [32] manipulates an MP3 player by twists and tugs on the headphone cord, making it
into an input device. FreeDigiter [22] is an infrared proximity sensor with a dual-axis accelerometer
which is small enough to be an in-ear hearing aid, and enables both recognition of hover finger
gestures and the control of mobile devices. Lissermann et al. [18] presents EarPut, a novel interface
concept and hardware prototype which instrumentalizes the human ear as an interactive surface by
placing unobtrusive accessories behind the ear. Concerning the flexibility of the ear, Kikuchi et al. [14]
proposes EarTouch, a new input method using several optical sensors attached to earphones to detect
deformations of the ear. Lee et al. [16] further explores the social acceptability of facial touches and
found that the ear garners a high score in terms of the facial region and social acceptability. These
previous studies show how interaction with the ears is possible from mainly a technical perspective.
In our study, we have attempted to discover what kind of input gestures are suitable for users and
perceive their mental models.

2.3 User Elicitation for Gesture Design
Gesture-based interfaces are common in a variety of application domains, such as for desktops,
mobile devices, augmented, virtual reality and gaming [12]. Initially for ear-based input, the gestures
have been usually defined by researchers and limited by the sensing limitations of prototype devices.
Some prior works directly employed users to define input systems, allowing users to join in the
design process. This process is known as “participatory design” [31]. Nielsen et al. [25] describe
a similar approach. They proposed a procedure that is useful for finding user-defined gestures that
emphasizes the importance of using theory from ergonomics. User elicitation has also been used
to design gesture interface on surface computing [23, 44], finger and hand motion gestures for
control of TVs [36, 37, 40], hand gestures for augmented reality [26], gestures while using skin as
an input surface for mobile computing [42], and when exploring different interactions between users
and smart devices, such as mobile phones [29, 50], smart glasses [35], smartwatches [2] and other
wrist-worn devices [13]. Villarreal-Narvaez et al. [41] provided a wide discuss about 216 exited user
gesture elicitation studies.

When it comes to user-specified and expert-specified gestures, Wobbrock et al. find that gestures
created by users were easier to master [23]. Furthermore, Nacenta et al. find that user-defined
gestures are more memorable [24]. Rico and Brewster investigated possible ways of measuring
social acceptability [28] and show that location and audience have a significant impact on a user’s
willingness to perform gestures. Also, to gain some insight into the user’s mental model and to
guide the designer in understanding the user’s design space, numerous studies have classified gesture
preferences into taxonomies based on gestures’ characteristics, e.g., Wobbrock et al. proposed a
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taxonomy which involves gestures for interactive tabletops [44]. Since then, many studies have
adopted or extended the taxonomies for interaction to mobile phones [29], wearables [2, 33, 35],
on-skin microgestures [5], augmented reality [26], and so on. Moreover, to analyze and interpret
elicited data, Wobbrock et al. created a formula for agreement scores [43], which has been widely
used by prior elicitation studies [26, 29, 35]. Later, Vatavu and Wobbrock modified this formula
[39] to make it more accurately to represent findings. And Vatavu et al. [38] further provided a new
approach to computing objective measures of consensus for the user gesture elicitation study. In this
study, we used the user-elicitation methodology to identify users’ expectations and suggestions for
smart earpieces and then use the agreement rate proposed by Vatavu and Wobbrock [39] to evaluate
our user-defined gesture set.

3 EXPLORING USER-DEFINED GESTURE FOR EARPIECE
In order to fully explore user-defined gestures for ear-based input, we elicited input from 28 partici-
pants. Participants were asked to design and perform a gesture around the ear that could execute or
trigger a specific task for ear-based input. To reduce fatigue, participants designed only one unique
gesture for each task. Note that no repetitive gestures were allowed for different tasks since one
gesture cannot result in different outcomes without causing a conflict for the system.

As Lissermann et al.’s study [18] indicates that because of the small area available for touch on the
ear, users like to use a variety of other atomic interaction primitives for ear-based input, in addition
to touch-based gestures. Also, owing to the advancement of ear-based input recognition technology,
many systems now can detect different interaction methods such as hovering hand gestures [22] and
touch-based gestures [14, 18]. Therefore, to explore which interaction methods and gestures users
intuitively performed for different tasks, we did not constrain the users’ designing or reference any
particular sensing technology. Instead, we sought to remove the gulf of execution [10] between the
user’s psychological goal and physical action. Thus, we encouraged participants to focus on gesture
design and assume that all gestures are recognizable, i.e., able to be perceived by some sensing
technology. There is no recognition feedback, nor restrictions, provided during the performance of
gestures, except that participants could only use one hand to perform the gesture and the interaction
space was required to be near or on the ear.

Each participant received 31 tasks to execute during the study (see Table 1) and these took
approximately 1.5 hours to complete. The individual gestures designed by participants for each task
were extracted and labeled from the recorded video and transcripts. Based on the collected data,
we conducted a taxonomical analysis and calculated the agreement rate (AR) of the gestures [39].
Ultimately we have proposed a user-defined gesture set.

3.1 Tasks
To understand how users interact with smart devices through ear-based input, we generated 31 tasks
that are common on smartphones and computers, as head-worn accessories are commonly used to
interact with them, as shown in Table 1. These tasks were selected from prior elicitation studies
that focus on gestures for interactive surfaces [6, 29, 36, 40, 44] and wearable devices [2]. They
include visual-necessary tasks for which users need to observe the target when executing operations
(e.g., “panning” or “zooming”) and non-visual-necessary tasks which users can perform without
visual feedback (e.g., “volume down” or “turn on microphone”). We followed the classification
instructions in [2, 29], grouping the tasks into two categories: action and navigation. Within each
category, there were two sub-categories: a task that can either be performed on a system/smartphone,
computer or tablet (e.g., switching to a different App) or a task that can be performed on a particular
application system (e.g., browsing websites). This classification allows us to create tasks that would be
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Table 1. The task list which is based on previous studies and grouped by category is presented to participants.
There are two categories: navigation and action, and two subcategories of each: system and application.

Navigation Action

System Application System Application

Go to Home Screen [2, 29] Pan Right [2, 6, 29, 44] Voice Search [29] Turn on Microphone [2]
App Switch Next [2, 29] Pan Left [2, 6, 29, 44] Act on Selection [2, 6, 29, 44] Turn off Microphone [2]
App Switch Previous [2, 29] Pan Up [2, 6, 29, 44] Maximize [6, 44] Mute Speaker [2, 6, 36, 40]
Previous [2, 6, 29, 36, 40, 44] Pan Down [2, 6, 29, 44] Minimize [6, 44] Unmute Speaker [2, 40]
Next [2, 6, 29, 36, 40, 44] Zoom In [2, 6, 29, 44] Answer Call [2, 29] Volume up [6, 36, 40]

Zoom Out [2, 6, 29, 44] Hang up Call [2, 29] Volume down [6, 36, 40]
Play [6]
Pause [6]
Stop [6]
Copy [2, 6, 44]
Cut [2, 6, 44]
Paste [2, 6, 44]
Open Menu [6, 36, 40, 44]
Close Menu [6, 36, 40, 44]

representative for head-worn devices such as smart earpieces or augmented glasses, while minimizing
task duplication.

3.2 Participants
Twenty-eight paid participants (17 females) were recruited from our university and community
volunteers for the study. The participants ranged in age from 20 to 34 years old (Mean = 24.75, SD =
2.93 years) and come from different academic backgrounds including engineering (N = 17), design
(N = 5), humanities and social sciences (N = 5), and business (N = 1). Only one participant wear an
earring on her earlobe. All participants are Asian, live in Taiwan, have owned or used smartphones
and are familiar with touch and gesture input.

3.3 Procedure
At the beginning of the formal study, the experimenter explained the goals of this study and introduced
the concepts of on-body and midair input proposed from related works to the participants via verbal
description. This was done to ensure that all participants have a common understanding of ear-based
input before eliciting the gestures.

Next, each participant was presented with a total of 31 tasks to execute. The order of tasks was
random. Participants were given the goal of each task and an abstract animation and were then
asked to design a gesture using the think-aloud protocol. The animations were provided to help the
participants to better understand the function of each task. To avoid legacy bias [7], the animations
were comprised of simple geometric shapes, sound, color and the task title which could allow
participants to understand the meaning of tasks, including both visual-necessary and non-visual-
necessary tasks. They instructed users by changing position, shape, or color, e.g., participants can
have an idea of “zoom out” via objects getting smaller (see Figure 1 (b) and (c)) or “close menu”
through the suddenly disappearing rectangle. This mitigates the effects of certain commonly-used
GUI interfaces. Within the period of designing gestures for each task, the participants could view the
animation as many times as they wanted, and were allowed to request clarification until he/she fully
understood the function of the task.
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Fig. 1. Our experiment was conducted within an (a) open environment using two laptops, and one of which
showing the task’s animation, e.g., the animation of “zoom out” was displayed from (b) to (c) in one second.

Whenever the gesture for each task was defined, the participant received a list of exploratory
questions about gesture details for better understanding their design rationales and preferences, such
as “Why is this gesture suitable?” and “Why did you choose this interaction type?”. Other questions
were posed to the participants to follow up accordingly to their response. We also asked them to
provide a continuous numeric rating from 1 to 7, with 1 indicating “strongly disagree” and 7 “strongly
agree”, according to the following criteria: (a) Suitability: the gesture I designed is a good match for
its intended use. (b) Usability: The gesture I designed is easy to perform. (c) Social Comfort: I can
perform this gesture in a social environment without feeling uncomfortable.

Note that participants could change their designs and track their previous gestures via video
anytime if they thought of more suitable ones, which ensured design coherence. Only their final
decisions were kept.

3.4 Study Configuration
The study configuration is displayed in Figure 1. Previous research [35] has shown that social
environments affect participants’ design rationales. Therefore, to make the resulting gesture set that
is fitting for social scenarios, we conducted our experiment at a coffee shop or in a discussion room in
our department. These locations are public to students and residents nearby, where everyone can talk
and mingle freely. Note that our goal is to ensure that the environment is open and comfortable for
the participants of the experiment. Thus, when the discussion room became too crowded and noisy,
six participants moved to a coffee shop where they each agreed that both locations have similar levels
of public exposure. The participants sat in front of two displays, where one showed the animation of
a task, and the other showed the live recording of the experiment. Therefore, the participant could
observe the gesture he/she created and modify it accordingly.

4 ANALYSES AND RESULTS
The study results include recorded videos, interview transcriptions, 31 tasks × 28 participants = 868
gestures, and the subjective ratings from the participants. Three researchers labeled these gestures
independently. We took a screen shot of the gestures from the video record and attached to it the
transcript of participants’ feedback for each task, and then used an affinity diagram to analyze these
gestures and discover any themes.

4.1 Taxonomy of the Gestures
The taxonomy was partially adopted from the previous studies [2, 26, 29], in which their taxonomy
had two different classes of dimension: gesture mapping and physical characteristics. Gesture
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Table 2. Taxonomy of gestures for ear-based interaction gestures based on collected gestures and previous
studies.

Gesture Mapping

Nature
Metaphoric Gesture is a metaphor of another object.
Symbolic Gesture visually depicts a symbol.
Abstract Gesture Mapping is arbitrary.

Context
Dependent Gesture requires specific context.
Independent Gesture does not require specific context.

Flow
Continuous Action occurs during the gesture.
Discrete Action occurs after the gesture completion.

Physical Characteristics

Locale
Mid-air Gesture occurs in the air with no physical contact.
Touch-based Gesture involves a contact with the ear.
Mixed Locale Gesture involves both locales.

Complexity
Simple Gesture consists of a single gesture.
Compound Gestures can be decomposed into simple gestures.

Form

Static Pose Hand pose is held in only one locale.
Static Pose and Path Hand pose is held as hand moves.
Dynamic Pose Hand pose changes in one location.
Dynamic Pose and Path Hand pose changes as hand moves.
Deformation Hand pose makes the ear deformation.

mapping describes how participants mapped the gestures to various tasks, including nature, context,
and flow. Physical characteristic, on the other hand, captures the characteristics of gesture themselves,
including locale, complexity, and form. The entire taxonomy is listed in Table 2.

As for the inter-rater reliability, we further invited an independent rater who was shown the same
categorization and did the classification for 372 gestures (12 trials were randomly picked for each
task). The inter-rater reliability rate was calculated using Cohen’s Kappa value (k = .889, p < .01)
and was higher than .8, showing that it was sufficient to build the validity of our classification [15].

The nature reflects the different levels of semantic knowledge involved in the gestures. This
dimension involves subcategories of metaphoric, symbolic, and abstract gesture types. Note that
we did not use the physical gesture type, as no particular physical object was specified in this work,
which is different from the smartwatches, mobile phones, and tables in previous studies [2, 29, 44].
The following are descriptions of the three categories:

• Metaphoric: The gesture acts on, with or like something else. In other words, it is a metaphor
for another physical object. For instance, use a thumb to press a button on an imaginary
stopwatch; spin the hand clockwise pretending to twist a knob to turn volume up.

• Symbolic: A symbolic gesture visually depicts a symbol, such as drawing a triangle in the air
to execute “play.”

• Abstract: Gesture mapping is arbitrary. It doesn’t have any metaphorical or symbolic connection
to the referent. Tapping on the ear with three fingers to stop the music is an abstract gesture.

The context dimension describes whether a gesture requires it being performed within a specific
context, or being performed independently. For example, an index finger sliding down along the helix
is context-specific. If you perform the gesture while listening to music, the volume will be lowered.
By contrast, going back to the homes creen by tapping the earlobe twice is a context-independent
gesture. The flow dimension describes whether the gesture action on an object occurs simultaneously
or after executing a gesture. The gesture would be categorized as a discrete gesture if the action
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Nature LocaleContext Complexity

.418

.241

.218

.075

.048 Dynamic Pose & Path
Deformation

Dynamic Pose

Static Pose

Static Pose & Path

Flow Form

.755

.245 Compound

Simple

.566

.391

.044

Touch-based

Mid-air

Mixed Locale

.620

.380 Continuous

Discrete

.806

.194

Dependent

Independent
.123 Symbolic

.588

.289

Metaphoric

Abstract

1.0

0.8

0.6

0.4

0.2

0.0

Fig. 2. The proportions of the 868 ear-based input gestures within each category in the six dimensional
taxonomy; y-axis represents the percentage.

occurs after the gesture is made, such as a tap on the ear to select the object. The gesture would be
considered continuous if the action occurs while the gesture is on-going such as a swipe in the air to
scroll the content.

The locale describes where, in relation to the human ear, a gesture is performed. The gesture is
considered touch-based if it requires physical contact with the ear. In contrast to touch-based is
mid-air if the gesture is performed in the air. A gesture that requires both is considered mixed locale.

The complexity dimension describes whether a gesture is a simple gesture or a compound gesture.
A compound gesture can be decomposed into simple gestures by dividing spatial discontinuities. For
instance, pinching the earlobe is a simple gesture, while pulling the earlobe is a compound gesture
because it can be divided into two spatial discontinuous gestures (i.e., pinching and pulling.) The
scope of the form dimension is within one hand. In Piumsomboon’s taxonomy [26], form contains
only four categories; however, we add one category Deformation into form dimension because of the
ear’s specific affordance. The followings are descriptions of the five categories:

• Static Pose: The hand pose remains in only one locale, e.g., putting a fist above the ear.
• Static Pose and Path: When the hand changes position, the posture of the hand remains the

same (no finger movement), e.g., moving the open palm away from the ear.
• Dynamic Pose: The gesture is defined as a dynamic pose when the hand’s pose changes while

the hand is still being held in the same position, e.g., splaying the hand while keeping the hand
above the ear.

• Dynamic Pose and Path: The hand changes its pose when the hand changes position, e.g., splay-
ing the hand while moving the hand away from the ear.

• Deformation: The gesture is classified as a deformation gesture when it makes the ear deformed,
such as bending the ear or pulling the ear lobe.

Figure 2 shows the distribution of each dimension and illustrates the breakdown of our classifications
of the 868 gestures.

To find out the preferences of ear parts in touch-based input, we labeled those gestures with the
different parts of the ear where were touched, and there were finally 7 subcategories for touch-based
input— tragus, center, lobe, helix, back, multiple ear parts and location doesn't matter. The definition
of lobe and helix are the same as the physiological structure, but our tragus subcategory consists
of the ear tragus as well as the junction of the tragus and cheek. Moreover, the center refers to the
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Locale

Back
.044

Lobe
.047

Helix
.084

Center
.02

Location doesn’t matter .116

Multiple Ear Parts .009

Tragus
.068

Fig. 3. The percentage distribution of different ear parts where participants had touched for each locale
subcategory of this taxonomy.

entire anterior outer ear except for the helix, lobe, and tragus. The gesture is considered back if it
is in contact with any part of the posterior outer ear and the gesture that requires more than two of
the above is considered multiple ear parts. The last special subcategory is called location doesn't
matter which suggests that the participants did not care where they have touched but were focused
on the action of “touch.” The results (see Figure 3) suggest that the participants seemed to prefer
completing the touch action rather than exactly touching a specific point.

4.2 User-defined Gestures
4.2.1 Classification Method. In the study of Wobbrock et al. [44], they group identical gestures
for each task. And their consensus set of gestures consists of the most common gesture (the group
consisting of largest number of any given gesture vis-à-vis others) elicited from participants for each
task. Roughly following their approach, we first group the same gestures for each task. Next, we
modified the classification according to whether you touch your ears. Later, when running an affinity
diagram, we discovered two other factors that have an impact on the results – gesture direction and
number of fingers, and then consider these two factors to regroup the gestures. After three grouping
sessions, we obtained the final classification for each task. These two factors will be discussed below.

The gesture direction. Gesture direction represents the direction of movement relative to the
ear. In the browsing tasks that are about switching, such as next, previous, app switch next, or app
switch previous, many participants performed the same gesture but in different directions. After
the semi-structured interviews, we found that the direction of gestures participants performed was
influenced by their prior experience with the existing user interface. For example, when designing a
gesture for app switch next, some participants swiped along the x-axis and some swiped along the
y-axis. The direction of the gestures corresponded to their previous experiences relative to transition
animation as shown on a touchscreen [2]. Although we have tried to avoid legacy bias by removing
elements that were related to mobile phones and computers, it was still difficult to prevent participants
from being influenced by their previous experience. Therefore, we decided not to consider which
axis but to consider only the positive or negative of the axis that the gesture moves along.

The number of fingers. The number of fingers represents the fingers that the participant considered
related to the gesture. This is because we found that when participants generated gestures by using a
different number of fingers for similar tasks, they often only cared if the number of fingers used one,
or more than one, instead of a precise number of fingers. One participant even said that he knew he
used more than one finger but did not remember the number accurately because that did not matter
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to him. This observation is similar to previous studies wherein participants had little concern about
how many fingers were used in a gesture [6, 45]. To cope with this confusion, we simply separated
gestures that used two or more fingers from those that used only one finger. This is less constraining
than matching the exact number of fingers used in performing gestures. But there was one exception,
when the gesture was a metaphor (e.g., using two fingers to perform the scissor), not abstractly used,
we would not follow the aforementioned criteria. Loosening the restriction from “gestures must be
identical within each group” to “gestures must be similar within each group” made this classification
better represent the thought underlying the gestures.

4.2.2 Agreement Between Participants. For each task, we placed groups of similar gestures together.
The group size was then used to compute an agreement score which can display the level of
participants’ consensus. We adopted the revised version of an agreement rating formula from Vatavu
and Wobbrok et al. [39] which accounts for a degree of freedom and made the agreement rate more
representative given the large samples of participants with the same proposal ratios. The revised
version of the formula is defined as the follows:

AR
(
r
)
=

|P|
|P|−1 ∑

Pi⊆P

(
|Pi|
|P|

)2

− 1
|P|−1

(1)

In Eq. (1), P is the set of all proposals for task r, |P| is the total number of gesture within the task r,
and |Pi| is a subset of similar proposals from P, and the range of AR values in [0,1].
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Fig. 4. Agreement rates for the 31 tasks in descending order.

Figure 4 illustrates the agreement rates for all 31 tasks. According to the qualitative interpretations
for agreement rates proposed by Vatavu et al. [39], our agreement rates ranged from .093 (low
agreement, AR ≤ .1) to .526 (very high agreement, AR > .5). The mean of AR was .213 (medium
agreement, .1 < AR < .3 ).

4.2.3 A User-defined Gesture Set. After grouping similar gestures in accordance with the afore-
mentioned criteria, the gesture found among the biggest group for each task is considered to be the
representative gesture. We referred to the set of those representative gestures as our user-defined
gesture set. Naturally, the gestures that were not found among the biggest group of each task were
automatically classified as the discarded set. Note that since we set two special criteria as mentioned
herein prior, the biggest group of some tasks included a gesture with different directions or numbers
of fingers. In such cases, we chose that particular gesture that was found in a relative majority from
the group set among the biggest group assigning it as the representative gesture.
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Fig. 5. Our study’s user-defined gesture set for ear-based input. The touch area indicates the command trigger
area, e.g., two fingers quickly tap anywhere on the ear to trigger “pause” or one finger tap the ear tragus for
an “act on selection” task. Note that all gesture representations meet the user-driven design principles which
were presented by McAweeney et al. [21].
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From this user-defined gesture set, we found that there were three tasks which were assigned two
gestures to them (‘pause”, “copy” and “open menu”), and 28 tasks only had one gesture. The reason
these three tasks were assigned two gestures was that there were two groups with the same and
equally large consensus in gestures for those tasks.

The complete user-defined gesture set is illustrated in Figure 5. This gesture set is a non-one-to-one
mapping of tasks and gestures. To illustrate precisely the gestures, we followed the design principles
for gesture representations which were presented by McAweeney et al. [21]. In addition, despite
there being no consensus for “voice search” (AR = .093) or “turn on the microphone” (AR = .098),
we still provided the gesture which comprised a relative majority and marked these with a star to
distinguish this quality.

4.3 The Subjective Rating of Gestures
The average scores for the user-defined gesture set and discarded set respectively were 5.85 (σ =
.37) and 5.75 (σ = .28) for Suitability, 5.91 (σ = .36) and 5.86 (σ = .25) for Usability, 5.57 (σ =
.49) and 5.55 (σ = .38) for Social Comfort. Comparing the subject ratings, the subjective scores for
Suitability of the user-defined gesture set was significantly higher than the discarded set (Z = 2.949,
p = .003). However, there was no significant difference for Usability and Social Comfort between
both groups. The percentage and score distribution of subject ratings were displayed in Figure 6. In
general, the participants consider that their gestures are suitable and plausible to be performed within
social scenarios. We speculate that due to the study environment of this study, the Usability and
Social Comfort for the consensus set and the discarded set are close. In other words, most participants
considered social-comfort and ease when designing their gestures in a semi-public environment.
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Fig. 6. The percentage and score distribution of subject ratings for the user-defined gesture set (blue back-
ground) and the discarded set (green background); x-axis represents the percentage. In addition, the exact
percentage less than 5% is not shown.

5 DESIGN RATIONALES, PREFERENCES, AND DISCUSSIONS
After analyzing the data including transcripts and video recording, we identified the following
common themes which describe the design rationales and preferences of the participants and notable
findings.

5.1 Migrating Touch Screen Gestures
Familiar touch gestures are often considered. For example, some participants swiped in the air for
panning and moving thumb and index finger apart or together for zooming as if they were using
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a touchscreen. In addition, for some input actions such as “play,” “act on selection” and “go to
home screen,” they tapped with a fingertip as if there were an imaginary surface next to or on the ear.
Mimicking of touchscreen gestures was also referred to in previous studies [2, 35]. Participants often
believed that these touchscreen related gestures were a good match for the tasks. From the interview,
the participants reported that “imitating the touchscreen gestures is easier to perform and easier to
remember (P17, P19-21, P25)” because these gestures have been standardized and used for a long
time. Finally, there was a high level of agreement rates on those gestures which mimic touchscreen
gestures (See Figure 4 and Figure 5.)

5.2 Utilizing Sign Gestures with Real-world Metaphors
As previous studies have referred [6, 26, 29, 35], participants also incorporated sign gestures in their
design. For example, to “answer a call,” a majority of participants performed a phone gesture which
was made of bending the index, middle and ring fingers and place the hand in this pose close to the
ear. By contrast, for “hang up a call,” participants removed the “answer a call” gesture from the ear
or turned the phone gesture upside down. The participants described that it is more intuitive to imitate
the conventional telephone experience. The other example is that participants performed an opened
palm for stop because this gesture was intuitive when you wanted to stop someone from approaching
you, and it is also used for stopping cars when directing the traffic. These metaphorical gestures
and sign gestures were usually considered a better fit for the task. The participants explained that
metaphorical gestures were more concrete and recognizable so that they could also inform bystanders
what they were doing, as other gestures may decrease their social comfort.

5.3 Preference of Interaction Methods for Different Tasks
Since we did not have any constraint on the interaction type in this user elicitation study, participants
intuitively designed different interaction methods and gestures for ear-based input. As a result,
the gestures that participants designed included both midair and touching the ear gestures. Some
participants performed gestures involving touching the ear because its “tactile feedback made them
feel the recognition more accurately (P10, P12-13, P16-17, P20, P28)”, and “touching the ear is a
natural behavior without attracting other people’s attention (P5, P10, P21).” By contrast, others
commented that “performing gestures in the air is better due to its spatial freedom to display gesture
variety (P8, P14, P18).”

The data in shown in Figure 2 suggests that regarding ear-based input, touch-based and midair
gestures are equally important (43.4% vs. 56.6%) regarding the number of gestures involving the
ear (touch-based and mixed locale) and gestures only in midair. Nonetheless, we found that 75% of
participants designed midair gestures when it comes to the tasks about browsing or adjusting scale,
such as panning, zooming in, zooming out, maximizing and minimizing. P13, P16, and P17 said that

“I did a midair gesture if the tasks used frequently. If I always perform it on my ear, it would be a little
uncomfortable.” On the contrary, an average of 70% of participants tended to design touch-based
gestures for some tasks regarding action triggering, i.e., act on selection and go to home screen. In
addition, an average of 68% of participants performed gestures involving touching the ear for tasks
that adjust sound, i.e., volume up/down and mute/unmute speaker. For instance, participants who
designed the gesture, covering the ear by palm, for mute speaker said that “Covering the ears is a
natural act when you hear a loud sound (P2, P4-5, P14, P17, P24, P28).” Interestingly, participants
adjusted the speaker through the medium—the ear, the organ of hearing in mammals.

In brief, as per the feedback from participants, instead of performing all task gestures in midair
or in a touch-based way, they showed more willingness to performing gestures in a different way
according to the tasks’ type.
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5.4 Design rationales of Touched-based Gestures
Two kinds of design rationales were usually seen when participants designed touch-based gestures.
One is performing a metaphoric or symbolic gesture to touch the ear for making sure it was completely
performed or, they imagined “touching would be detected more accurately (P10, P11-12, P22).”

The other design rationale was using the point or locale where gesture is performed to assign
tasks. This kind of design rationale was usually seen when participants were trying to transfer the
smart device experience to ear-based input. To further explore if this design rationale regarding
which points on the ear were used frequently and whether the ear points were mapped for specific
tasks would reach a consensus among participants, we analyzed the gestures and found that the lobe
(17.5%), tragus (25.9%), helix (32.0%), and back (16.7%) are the most preferred areas to perform
touch-based gestures upon with a specified touch point in descending order of preference, and their
use corresponded to specific tasks. For example, in proposed helix-based gestures, 52.1% were
performed with a sliding gesture along the helix such as adjustment type tasks, adjusting “volume up”
and “volume down.” A majority of participants pinched the ear lobe to “go to home screen” because
they considered that the ear lobe is special and obvious, and its round shape made them think of the
“home button.” In addition, the ear tragus was usually chosen for “act on selection,” or other tasks for
which participants considered that the task could be actuated by pressing a button.

5.5 Similar Gestures for Seemingly Related Tasks
As previous studies have shown [6, 26], we had a similar finding in that participants chose similar
gestures for seemingly related tasks or the tasks that they thought it would be executed consecutively.
They tried to set rules for performing the gestures of related tasks. One pattern was to perform the
same pose but use a different interaction types such as tapping the index and middle finger together for
actuating “cut” and tapping the ear with these two fingers for actuating “paste.” Another pattern was
to perform the same interaction types but to do so by using a varying numbers of fingers, e.g., some
participants used one finger to swipe right for next and used two or more fingers to swipe right for app
switch next. It makes the series of tasks more convenient and faster to perform and easier to remember
if gestures exist using the same rules or same forms. Furthermore, one participant proposed a special
pattern that mapped the number of fingers to the order that in which tasks were generally executed.
More specifically, this participant designed gestures with finger increment patterns, assigning one,
two fingers and five finger tapping for the “play,” “pause” and “stop” task because the button was
usually pressed in sequence.

Interestingly, for those tasks which were different, but participants felt had similar attributes, they
were also assigned similar gestures. In our user-defined gesture set, swiping is preferred for the tasks

“pan,” “next,” “app switch next,” and “volume up,” and splaying the hand is preferred for the tasks
“zoom in,” “maximize,” and “turn on microphone.” Besides, some participants mentioned that the
gestures should be the same when performing “on/off ” and “mute/unmute,” like clicking a switch.

5.6 Design Space of Deformation Interaction
Because the outer ear is made of ridged cartilage covered by skin, it is flexible enough that some
participants deformed the ear for ear-based input. This form was chosen for 7.5% of all the 868
gestures. Only two tasks, “go to home screen” and “voice search,” using such gestures are among
our user-defined gesture set. We believe that the deformation gestures are used “sparingly” to avoid
physical and social discomfort. Nevertheless, we are also interested in how participants deformed the
ear and at which points did the participants deform their ear, so we classified all deformation gestures
among the 868 gestures and then provided a design space. We found that if we only considered the
deformation type when analyzing gestures, there were four methods of deforming the ear—pinching,
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flicking, bending and pulling. Those actions were also varied by duration, deformation quantity, and
direction. Moreover, participants tended to deform specific ear parts, namely the lobe or the helix, or
alternatively the entire ear. Figure 7 shows the design space in regard to deformation interaction for
ear-based input.

Fig. 7. Design space for deformation interaction for ear-based input, organized primarily by where (columns)
and how (rows) the deformation takes place and the locale at which the corresponding method may be
performed.

5.7 Preferences regarding Fingers for Performing Gesture
From all 868 gestures, we found that a majority of gestures consist of using a single finger (39.5%),
while using two fingers (31.6%) or the palm (22.6%) comprised the bulk of the remaining gestures.
In terms of single-finger gestures, participants chose to use the index finger (90.6%), the thumb
(8.7%), and the middle finger (0.6%) in that descending order of preference while no participant
used their ring finger or the picky finger independently. When it comes to two-finger gestures, there
are four finger pairs in use— thumb and index finger (50.7%), index and middle finger (41.6%),
thumb and pinky (7.3%), and index finger and pinky (0.4%). And the most frequently used fingers
are the thumb (47.1%), index finger (91.4%) and middle finger (39.5%) in that order. This could
be explained by Wolf et al.’s [46] assertion in their summary of the anatomy of the hand it is that
because of biomechanics, that the thumb, index finger and middle finger are used more as they are
more dexterous and suitable for independent movement. Alternatively, the ring finger is considered
clumsy because there are two muscles synergistically bending the index, middle, and little finger
to bring them into the palm position. In addition, social connotations of given gestures also had an
impact on which fingers participants choose to use. For example, one participant expressed that he
avoided performing gestures with a single middle finger because of its insulting meaning. Neither
did he use the pinky finger. Although the pinky finger can move independently, it was less used
separately due to an assigned offensive social meaning by the users.

5.8 Comfort to perform gestures in public
As mentioned prior, sign gestures and metaphorical gestures also were to be less comfortable to
use in public because their meaning was known to all. Moreover, two participants indicated that the
gestures that are multi-stepped or taking a long time to perform were generally not acceptable to
participants, as well. However, those gestures that were seemed to slightly touch the ear such as
pinching the ear lobe or touching the ear helix and sliding down as if tucking hair behind the ear
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were considered to be more suitable to perform in public than midair gestures. Also, nine participants
indicated that the small-sized gestures that only involve wrist movement, not the entire arm, and with
the performing range not exceeding the width of their shoulder to be more acceptable.

5.9 Comparison to Previously Proposed Ear Gestures
In the condition where users have a larger input area [33], ears are used for ignoring a call task.
Serrano et al. [33] also show that legacy gestures are often considered for general tasks, such as
panning, zooming, and rotating. This echo to our user study results. For more future work, it would
be interesting to re-examine how face-based and ear-based gestures can be modified and combined
into a more powerful yet intuitive gesture set.

5.10 Implications for Gesture Recognition of Ear-based Input
Similar to other user elicitation studies, we focused on exploring user-defined gestures, regardless
of the sensory technique. Although we did not consider how to track gestures and where to place
the sensing device on, we still offer several suggestions concerning the technique that is required to
recognize the gestures from the results of this work. To be more specific, our user-defined gesture
set indicates that people utilize the midair method to perform 58% of tasks as mentioned in Table 1.
For midair input, the gestures include static and dynamic poses, and the number of fingers plays a
vital role. Therefore, the technique of hand and finger tracking and recognition are required. Soli
[17] is a possible solution for the midair gestures in our work. Also, depending on the users’ design
preferences, the sensing region that is directly above the shoulder and below the head is required
at least. In comparison with the gestures made in the air, users consider the surface of the outer
ear as an input device during performing touch-based gestures. Hence, we recommend that the
sensing area should cover the entire ear flexibly and enable the sensors to detect the position and
number of touchpoints. On-body electronic signal sensing, ActiTouch [48], is a viable solution for
touch-based gestures. In addition, some prior works can implement a sensing method for those
deformable gestures in this work, e.g., both EarPut [18] and EarTouch [14] detect large and small
deformations.

6 LIMITATIONS AND FUTUREWORK
As previous studies indicate [34, 40], legacy bias may have an impact on the results of this user
elicitation study. Although we took care to not show any smartphone or computer related elements
within our task animations to offset the legacy bias from the touchscreen, participants still often
utilized the smart device paradigm. It could be seen that touchscreen gestures were usually referred
to mentally by the participants and led to a greater agreement amongst them. Additionally, the legacy
bias from personal experience impacts the agreement scores. There was an example that previous
experience negatively affected agreement scores: the gestures that participants designed for “pause”
included using two fingers tapping to symbolized the pause icon, showing an opened palm forward
as in traffic sign language and pressing an imaginary pause button. These gestures showed how
participants transferred their personal experiences into gesture design. This observation also suggests
that the user-defined gesture may vary according to the background of the participants, in regard to
such factors as age, culture, and gender. Examining these factors is important future work.

Also, there is another limitation of this work that this study was only conducted with the participants
sitting. With the popularity of smart headphones, people often wear them in a variety of environments
(such as running.) Besides, a previous work [4] showed that compared to running, participants
thought that the same on-body input gestures were easier to perform when standing. Therefore, more
exploration is needed to understand how the position of such participants affects ear-based input.
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The other limitation of our study is that we did not take the personal difference into account, such
as wearing an earring. One participant mentioned that because of her earrings, when she considers
the earlobe to be a good place for gestures, she moves around to the edge of the earlobe rather than
the center of the earlobe. Hence, the personal differences of the ear should be further studied in the
future.

7 CONCLUSION
Our study explored user-defined gesture input for smart earpieces beyond the capabilities of recent
sensing technology. We proposed a user-defined gesture set based on participants’ agreement in
regard to 868 gestures and summarized the interaction methods that participants designed in our user
elicitation study. Our results indicate that participants liked both midair gestures and touch-based
gestures, and that they chose different interactions depending on the type of tasks. Furthermore, we
discovered participants’ design rationales, preferences, and gained insight into design patterns which
could be translated into implications for sensing technology development and interaction design.
We believe that our study represents a necessary step towards making ear-based input devices more
intuitive and effective.
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medicinskih biokemičara / HDMB 22 (10 2012), 276–82. https://doi.org/10.11613/BM.2012.031

[16] DoYoung Lee, Youryang Lee, Yonghwan Shin, and Ian Oakley. 2018. Designing Socially Acceptable Hand-to-Face
Input. In Proceedings of the 31st Annual ACM Symposium on User Interface Software and Technology (Berlin, Germany)
(UIST ’18). ACM, New York, NY, USA, 711–723. https://doi.org/10.1145/3242587.3242642

[17] Jaime Lien, Nicholas Gillian, M. Emre Karagozler, Patrick Amihood, Carsten Schwesig, Erik Olson, Hakim Raja, and
Ivan Poupyrev. 2016. Soli: Ubiquitous Gesture Sensing with Millimeter Wave Radar. ACM Trans. Graph. 35, 4, Article
142 (July 2016), 19 pages. https://doi.org/10.1145/2897824.2925953

[18] Roman Lissermann, Jochen Huber, Aristotelis Hadjakos, Suranga Nanayakkara, and Max Mühlhäuser. 2014. EarPut:
Augmenting Ear-worn Devices for Ear-based Interaction. In Proceedings of the 26th Australian Computer-Human
Interaction Conference on Designing Futures: The Future of Design (Sydney, New South Wales, Australia) (OzCHI ’14).
ACM, New York, NY, USA, 300–307. https://doi.org/10.1145/2686612.2686655

[19] Denys J. C. Matthies, Simon T. Perrault, Bodo Urban, and Shengdong Zhao. 2015. Botential: Localizing On-Body
Gestures by Measuring Electrical Signatures on the Human Skin. In Proceedings of the 17th International Conference on
Human-Computer Interaction with Mobile Devices and Services (Copenhagen, Denmark) (MobileHCI ’15). Association
for Computing Machinery, New York, NY, USA, 207–216. https://doi.org/10.1145/2785830.2785859

[20] Denys J. C. Matthies, Bernhard A. Strecker, and Bodo Urban. 2017. EarFieldSensing: A Novel In-Ear Electric Field
Sensing to Enrich Wearable Gesture Input through Facial Expressions. In Proceedings of the 2017 CHI Conference on
Human Factors in Computing Systems (Denver, Colorado, USA) (CHI ’17). Association for Computing Machinery, New
York, NY, USA, 1911–1922. https://doi.org/10.1145/3025453.3025692

[21] Erin McAweeney, Haihua Zhang, and Michael Nebeling. 2018. User-Driven Design Principles for Gesture Representa-
tions. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (Montreal QC, Canada)
(CHI ’18). ACM, New York, NY, USA, Article 547, 13 pages. https://doi.org/10.1145/3173574.3174121

[22] C. Metzger, M. Anderson, and T. Starner. 2004. FreeDigiter: a contact-free device for gesture control. In Eighth
International Symposium on Wearable Computers, Vol. 1. 18–21. https://doi.org/10.1109/ISWC.2004.23

[23] Meredith Ringel Morris, Jacob O. Wobbrock, and Andrew D. Wilson. 2010. Understanding Users’ Preferences for
Surface Gestures. In Proceedings of Graphics Interface 2010 (Ottawa, Ontario, Canada) (GI ’10). Canadian Information
Processing Society, Toronto, Ont., Canada, Canada, 261–268. http://dl.acm.org/citation.cfm?id=1839214.1839260

[24] Miguel A. Nacenta, Yemliha Kamber, Yizhou Qiang, and Per Ola Kristensson. 2013. Memorability of Pre-designed and
User-defined Gesture Sets. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (Paris,
France) (CHI ’13). ACM, New York, NY, USA, 1099–1108. https://doi.org/10.1145/2470654.2466142

[25] Michael Nielsen, Moritz Störring, Thomas B. Moeslund, and Erik Granum. 2004. A Procedure for Developing Intuitive
and Ergonomic Gesture Interfaces for HCI. In Gesture-Based Communication in Human-Computer Interaction, Antonio
Camurri and Gualtiero Volpe (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 409–420.

[26] Thammathip Piumsomboon, Adrian Clark, Mark Billinghurst, and Andy Cockburn. 2013. User-defined Gestures for
Augmented Reality. In CHI ’13 Extended Abstracts on Human Factors in Computing Systems (Paris, France) (CHI EA
’13). ACM, New York, NY, USA, 955–960. https://doi.org/10.1145/2468356.2468527

18

https://doi.org/10.1145/2858036.2858483
https://doi.org/10.1207/s15327051hci0104_2
https://doi.org/10.1145/2702123.2702572
https://eprints.soton.ac.uk/261149/
https://eprints.soton.ac.uk/261149/
https://doi.org/10.1145/2971485.2971519
https://doi.org/10.1145/3098279.3098538
https://doi.org/10.11613/BM.2012.031
https://doi.org/10.1145/3242587.3242642
https://doi.org/10.1145/2897824.2925953
https://doi.org/10.1145/2686612.2686655
https://doi.org/10.1145/2785830.2785859
https://doi.org/10.1145/3025453.3025692
https://doi.org/10.1145/3173574.3174121
https://doi.org/10.1109/ISWC.2004.23
http://dl.acm.org/citation.cfm?id=1839214.1839260
https://doi.org/10.1145/2470654.2466142
https://doi.org/10.1145/2468356.2468527


Exploring User Defined Gestures for Ear-Based Interactions ISS’20, November 08–11, 2020, Lisbon, Portugal

[27] Jun Rekimoto. 2001. GestureWrist and GesturePad: Unobtrusive Wearable Interaction Devices. In Proceedings of the
5th IEEE International Symposium on Wearable Computers (ISWC ’01). IEEE Computer Society, Washington, DC,
USA, 21–. http://dl.acm.org/citation.cfm?id=580581.856565

[28] Julie Rico and Stephen Brewster. 2010. Usable Gestures for Mobile Interfaces: Evaluating Social Acceptability. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (Atlanta, Georgia, USA) (CHI ’10).
ACM, New York, NY, USA, 887–896. https://doi.org/10.1145/1753326.1753458

[29] Jaime Ruiz, Yang Li, and Edward Lank. 2011. User-defined Motion Gestures for Mobile Interaction. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems (Vancouver, BC, Canada) (CHI ’11). ACM, New
York, NY, USA, 197–206. https://doi.org/10.1145/1978942.1978971

[30] T. Scott Saponas, Desney S. Tan, Dan Morris, Ravin Balakrishnan, Jim Turner, and James A. Landay. 2009. Enabling
Always-available Input with Muscle-computer Interfaces. In Proceedings of the 22Nd Annual ACM Symposium on
User Interface Software and Technology (Victoria, BC, Canada) (UIST ’09). ACM, New York, NY, USA, 167–176.
https://doi.org/10.1145/1622176.1622208

[31] Douglas Schuler and Aki Namioka (Eds.). 1993. Participatory Design: Principles and Practices. L. Erlbaum Associates
Inc., Hillsdale, NJ, USA.

[32] Julia Schwarz, Chris Harrison, Scott Hudson, and Jennifer Mankoff. 2010. Cord Input: An Intuitive, High-accuracy,
Multi-degree-of-freedom Input Method for Mobile Devices. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (Atlanta, Georgia, USA) (CHI ’10). ACM, New York, NY, USA, 1657–1660. https:
//doi.org/10.1145/1753326.1753573

[33] Marcos Serrano, Barrett M. Ens, and Pourang P. Irani. 2014. Exploring the Use of Hand-to-face Input for Interacting with
Head-worn Displays. In Proceedings of the 32Nd Annual ACM Conference on Human Factors in Computing Systems
(Toronto, Ontario, Canada) (CHI ’14). ACM, New York, NY, USA, 3181–3190. https://doi.org/10.1145/2556288.
2556984

[34] Teddy Seyed, Chris Burns, Mario Costa Sousa, Frank Maurer, and Anthony Tang. 2012. Eliciting Usable Gestures for
Multi-display Environments. In Proceedings of the 2012 ACM International Conference on Interactive Tabletops and
Surfaces (Cambridge, Massachusetts, USA) (ITS ’12). ACM, New York, NY, USA, 41–50. https://doi.org/10.1145/
2396636.2396643

[35] Ying-Chao Tung, Chun-Yen Hsu, Han-Yu Wang, Silvia Chyou, Jhe-Wei Lin, Pei-Jung Wu, Andries Valstar, and Mike Y.
Chen. 2015. User-Defined Game Input for Smart Glasses in Public Space. In Proceedings of the 33rd Annual ACM
Conference on Human Factors in Computing Systems (Seoul, Republic of Korea) (CHI ’15). ACM, New York, NY, USA,
3327–3336. https://doi.org/10.1145/2702123.2702214

[36] Radu-Daniel Vatavu. 2012. User-defined Gestures for Free-hand TV Control. In Proceedings of the 10th European
Conference on Interactive TV and Video (Berlin, Germany) (EuroITV ’12). ACM, New York, NY, USA, 45–48.
https://doi.org/10.1145/2325616.2325626

[37] Radu-Daniel Vatavu. 2013. A Comparative Study of User-Defined Handheld vs. Freehand Gestures for Home Entertain-
ment Environments. J. Ambient Intell. Smart Environ. 5, 2 (March 2013), 187–211.

[38] Radu-Daniel Vatavu. 2019. The Dissimilarity-Consensus Approach to Agreement Analysis in Gesture Elicitation Studies.
In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (Glasgow, Scotland Uk) (CHI

’19). Association for Computing Machinery, New York, NY, USA, 1–13. https://doi.org/10.1145/3290605.3300454
[39] Radu-Daniel Vatavu and Jacob O. Wobbrock. 2015. Formalizing Agreement Analysis for Elicitation Studies: New

Measures, Significance Test, and Toolkit. In Proceedings of the 33rd Annual ACM Conference on Human Factors in
Computing Systems (Seoul, Republic of Korea) (CHI ’15). ACM, New York, NY, USA, 1325–1334. https://doi.org/10.
1145/2702123.2702223

[40] Radu-Daniel Vatavu and Ionut-Alexandru Zaiti. 2014. Leap Gestures for TV: Insights from an Elicitation Study. In
Proceedings of the ACM International Conference on Interactive Experiences for TV and Online Video (Newcastle Upon
Tyne, United Kingdom) (TVX ’14). ACM, New York, NY, USA, 131–138. https://doi.org/10.1145/2602299.2602316

[41] Santiago Villarreal-Narvaez, Jean Vanderdonckt, Radu-Daniel Vatavu, and Jacob O. Wobbrock. 2020. A Systematic
Review of Gesture Elicitation Studies: What Can We Learn from 216 Studies?. In Proceedings of the 2020 ACM
Designing Interactive Systems Conference (Eindhoven, Netherlands) (DIS ’20). Association for Computing Machinery,
New York, NY, USA, 855–872. https://doi.org/10.1145/3357236.3395511

[42] Martin Weigel, Vikram Mehta, and Jürgen Steimle. 2014. More than Touch: Understanding How People Use Skin as
an Input Surface for Mobile Computing. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (Toronto, Ontario, Canada) (CHI ’14). Association for Computing Machinery, New York, NY, USA, 179–188.
https://doi.org/10.1145/2556288.2557239

[43] Jacob O. Wobbrock, Htet Htet Aung, Brandon Rothrock, and Brad A. Myers. 2005. Maximizing the Guessability of
Symbolic Input. In CHI ’05 Extended Abstracts on Human Factors in Computing Systems (Portland, OR, USA) (CHI EA

’05). ACM, New York, NY, USA, 1869–1872. https://doi.org/10.1145/1056808.1057043

19

http://dl.acm.org/citation.cfm?id=580581.856565
https://doi.org/10.1145/1753326.1753458
https://doi.org/10.1145/1978942.1978971
https://doi.org/10.1145/1622176.1622208
https://doi.org/10.1145/1753326.1753573
https://doi.org/10.1145/1753326.1753573
https://doi.org/10.1145/2556288.2556984
https://doi.org/10.1145/2556288.2556984
https://doi.org/10.1145/2396636.2396643
https://doi.org/10.1145/2396636.2396643
https://doi.org/10.1145/2702123.2702214
https://doi.org/10.1145/2325616.2325626
https://doi.org/10.1145/3290605.3300454
https://doi.org/10.1145/2702123.2702223
https://doi.org/10.1145/2702123.2702223
https://doi.org/10.1145/2602299.2602316
https://doi.org/10.1145/3357236.3395511
https://doi.org/10.1145/2556288.2557239
https://doi.org/10.1145/1056808.1057043


ISS’20, November 08–11, 2020, Lisbon, PortugalYu-Chun Chen, Chia-Ying Liao, Shuo-wen Hsu, Da-Yuan Huang, and Bing-Yu Chen

[44] Jacob O. Wobbrock, Meredith Ringel Morris, and Andrew D. Wilson. 2009. User-defined Gestures for Surface
Computing. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (Boston, MA, USA)
(CHI ’09). ACM, New York, NY, USA, 1083–1092. https://doi.org/10.1145/1518701.1518866

[45] Katrin Wolf, Anja Naumann, Michael Rohs, and Jörg Müller. 2011. Taxonomy of Microinteractions: Defining Microges-
tures Based on Ergonomic and Scenario-Dependent Requirements. In Proceedings of the 13th IFIP TC 13 International
Conference on Human-Computer Interaction - Volume Part I (Lisbon, Portugal) (INTERACT’11). Springer-Verlag,
Berlin, Heidelberg, 559–575.

[46] Katrin Wolf, Anja Naumann, Michael Rohs, and Jörg Müller. 2011. Taxonomy of Microinteractions: Defining Microges-
tures Based on Ergonomic and Scenario-Dependent Requirements. In Proceedings of the 13th IFIP TC 13 International
Conference on Human-Computer Interaction - Volume Part I (Lisbon, Portugal) (INTERACT’11). Springer-Verlag,
Berlin, Heidelberg, 559–575.

[47] Xing-Dong Yang, Tovi Grossman, Daniel Wigdor, and George Fitzmaurice. 2012. Magic Finger: Always-available Input
Through Finger Instrumentation. In Proceedings of the 25th Annual ACM Symposium on User Interface Software and
Technology (Cambridge, Massachusetts, USA) (UIST ’12). ACM, New York, NY, USA, 147–156. https://doi.org/10.
1145/2380116.2380137

[48] Yang Zhang, Wolf Kienzle, Yanjun Ma, Shiu S. Ng, Hrvoje Benko, and Chris Harrison. 2019. ActiTouch: Robust
Touch Detection for On-Skin AR/VR Interfaces. In Proceedings of the 32nd Annual ACM Symposium on User Interface
Software and Technology (New Orleans, LA, USA) (UIST ’19). Association for Computing Machinery, New York, NY,
USA, 1151–1159. https://doi.org/10.1145/3332165.3347869

[49] Yang Zhang, Junhan Zhou, Gierad Laput, and Chris Harrison. 2016. SkinTrack: Using the Body as an Electrical
Waveguide for Continuous Finger Tracking on the Skin. In Proceedings of the 2016 CHI Conference on Human Factors
in Computing Systems (San Jose, California, USA) (CHI ’16). Association for Computing Machinery, New York, NY,
USA, 1491–1503. https://doi.org/10.1145/2858036.2858082

[50] Kening Zhu, Xiaojuan Ma, Haoyuan Chen, and Miaoyin Liang. 2017. Tripartite Effects: Exploring Users’ Mental Model
of Mobile Gestures under the Influence of Operation, Handheld Posture, and Interaction Space. International Journal of
Human–Computer Interaction 33, 6 (2017), 443–459. https://doi.org/10.1080/10447318.2016.1275432

20

https://doi.org/10.1145/1518701.1518866
https://doi.org/10.1145/2380116.2380137
https://doi.org/10.1145/2380116.2380137
https://doi.org/10.1145/3332165.3347869
https://doi.org/10.1145/2858036.2858082
https://doi.org/10.1080/10447318.2016.1275432

	Abstract
	1 INTRODUCTION
	2 Related Work
	2.1 On-Body Input
	2.2 Interaction with the Ears
	2.3 User Elicitation for Gesture Design

	3 Exploring user-defined gesture for earpiece
	3.1 Tasks
	3.2 Participants
	3.3 Procedure
	3.4 Study Configuration

	4 Analyses and Results
	4.1 Taxonomy of the Gestures
	4.2 User-defined Gestures
	4.3 The Subjective Rating of Gestures

	5 Design Rationales, Preferences, and Discussions
	5.1 Migrating Touch Screen Gestures
	5.2 Utilizing Sign Gestures with Real-world Metaphors
	5.3 Preference of Interaction Methods for Different Tasks
	5.4 Design rationales of Touched-based Gestures
	5.5 Similar Gestures for Seemingly Related Tasks
	5.6 Design Space of Deformation Interaction
	5.7 Preferences regarding Fingers for Performing Gesture
	5.8 Comfort to perform gestures in public
	5.9 Comparison to Previously Proposed Ear Gestures
	5.10 Implications for Gesture Recognition of Ear-based Input

	6 Limitations and Future Work
	7 Conclusion
	Acknowledgments
	References

