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Abstract
In the past few years, deep reinforcement learn-
ing has been proven to solve problems which have
complex states like video games or board games.
The next step of intelligent agents would be to gen-
eralize between tasks, and using prior experience to
pick up new skills more quickly. However, most re-
inforcement learning algorithms, for now, are often
suffering from catastrophic forgetting even when
facing a very similar target task. Our approach en-
ables the agents to generalize knowledge from a
single source task, and boost the learning progress
with a semi-supervised learning method when fac-
ing a new task. We evaluate this approach on Atari
games, which is a popular reinforcement learning
benchmark, and show that it outperforms common
baselines based on pre-training and fine-tuning.

1 Introduction
Deep Reinforcement Learning (DRL), the combination of re-
inforcement learning methods and deep neural network func-
tion approximators, has recently shown considerable success
in challenging tasks that have very complex states and many
available actions, such as arcade video games [Mnih et al.,
2015], robotic manipulation [Levine et al., 2016], and even
the challenging classic games - Go [Silver et al., 2016]. These
methods can learn features that are often better than hand-
craft ones, which require more domain knowledge. For ex-
ample, Deep Q-Network (DQN) [Mnih et al., 2015] is one
of the most famous DRL methods, and has achieved super
human performance on the Arcade Learning Environment
(ALE) [Bellemare et al., 2013], which is a benchmark of
Atari 2600 arcade games.

Although the DRL algorithms can usually learn how to
take the best action based on the state of the environment, but
it can only learn a single environment at a time, despite the
similarities between those environments. For example, the
tennis-like game of pong and the squash-like game of break-
out are similar in that each game consists of trying to hit a
moving ball with a rectangular paddle, but an agent that is
good at pong cannot handle breakout well, and vice versa.
Another issue of DRL is that training DRL agents can be
very time-consuming, so many researchers are studying on

the methods that can speed up the training time [Mnih et al.,
2016; van Hasselt et al., 2016].

Some methods speed up the learning on new tasks by
performing cross environment transfer [Rusu et al., 2016;
Parisotto et al., 2015], but they all need to pre-train an agent
on multiple source environments to generalize the knowl-
edge, which is very time-consuming. In this work, we are
trying to leverage the prior knowledge learned by an agent
in a single-source environment to speed up the agent to han-
dle another new environment. Using the prior knowledge in
only one source environment can minimize the training time
in another new environment, and can also solve some issues
of reinforcement learning, including unable to handle similar
tasks and long training time problems.

Inspired by previous proposed domaion adaptation
works [Tzeng et al., 2017; Sun and Saenko, 2016; Ganin
and Lempitsky, 2015; Ganin et al., 2016; Sun et al., 2016;
Xiao et al., 2016; Ben-David et al., 2010], we propose a
semi-supervised transfer learning method that uses the con-
cept of the adversarial objective. More specifically, a map-
ping function is learned from the target observations to the
source feature space by fooling a domain discriminator that
tries to distinguish the encoded target observation from the
source examples. We also found it is helpful for transferring
knowledge by altering the visual content with the proper set-
ting when training on the source task, that is, adding proper
augmentation when training will be helpful on transferring
knowledge to another task. Our approach can be integrated
into any DRL algorithm, and in this paper, we show our re-
sults by combining it with DQN [Mnih et al., 2015] algorithm
and performing on Atari 2600 benchmark.

Our contributions are two-folds: First, we propose a
method that can leverage the knowledge learned from a sin-
gle source task to speed up the training on another new target
environment. Second, we found that performing proper aug-
mentation on the environment to train a source agent and use
it as a target task initialization often can help. With these pro-
posed methods, the overall learning on the target task can be
accelerated comparing with the baselines that we have con-
sidered. .

2 Approach
In this section, we present a transfer learning method that can
speed up the learning progress when facing new target task.



Furthermore, we found a novel data augmentation method
that can help single task agents to avoid over-fitting and thus
learn more generalized policy.

2.1 Transfer with Adversarial Objective
(AdvTransfer)

We present a framework for unsupervised domain adaption
between deep reinforcement learning tasks. Assume a source
environment Envs and a target environment Envt, there are
domain shifts between Envs and Envt. We have access to
the reward and next state after acted on Envs.

The overview is shown in Figure 1, we first pre-trained the
source task agent on EnvS , training a feature encoder FS

and Q-value predictor VS that can return a vector of Q values
for all possible actions by given features of observation, thus
can select the best action a. And our goal is to learn a target
feature encoder FT and Q-value predictor VT that can handle
EnvT as fast as possible.

We integrate generative adversarial network [Goodfellow
et al., 2014] concept into transfer progress, as shown in Fig-
ure 1 (b). The target feature encoder FT plays the role of the
generator, and a domain classifier D that can predict the do-
main label (source or target domain) by seeing the encoded
features output by FS and FT . We then perform adversarial
adaption by training the FT in order to to prevent the do-
main classifier from predicting the correct domain label from
the encoder features. The target feature encoder (Genera-
tor) and domain classifier (Discriminator) are playing coun-
terparts. At the end of the training, the target feature encoder
FT will learn the feature representations that can be general-
ized across both source and target domain.

In the adversarial objective approach, the main goal is to
regularize the learning of the source and target mappings, we
can minimize the distance between FS(Ss) and FT (St) dis-
tributions, where Ss and St is the states of EnvS and EnvT .
If the distribution between FS(Ss) and FT (St) are similar,
then we can directly apply source task Q-value predictor Vs
to the Ft, skipping the need to learn a Vt.

We first describe the domain classifier, D, which classifies
whether encoded features are drawn from the source or the
target domain. Thus D is optimized according to a standard
cross entropy loss, LD(Ss, St, Fs, Ft) where the labels indi-
cate the origin domain, defined below:

LD(Ss, St, Fs, Ft) = − log(D(Fs(Ss)))−log(1−D(Ft(St)))
(1)

And for the generator, we train with the standard loss func-
tion with inverted labels [Goodfellow et al., 2014]; then the
loss can be described as:

LG(St, D) = − log(D(Ft(St))) (2)
Then, the source and target mappings are optimized ac-

cording to an adversarial objective; they are optimized to con-
fuse D to unable to predict reliable domain label.

2.2 Augmentation
Most deep reinforcement learning algorithms can achieve
great performance in a single environment, but agents often

cannot handle a new slightly altered environment. A DQN
agent that pre-trained on original Pong performs badly on two
of its variations (-15.9 on Pong with Gaussian noise and -20.9
on Pong with inverted color).

Rusu et al. [Rusu et al., 2016] analyzed the Pong to noisy
Pong case, and found that the high-level filter on the clean
task is not sufficiently tolerant to the added noise. Thus some
new low-level vision has to be relearned to adapt to the new
task environment. We found that by adding some augmen-
tations to the source task during training on the source task
would help avoid over-fitting and thus learn more critical fea-
tures of the task. We added a data augmentation layer before
feed the input data into replay memory; the data augmenta-
tion layer will randomly transform the input. For example,
Eq. (3) demonstrates a data augmentation layer that will in-
vert the color of the environment state (screen) with the prob-
ability of 30%, and remain unchanged otherwise.

S =

{
1− S 30%

S otherwise
(3)

Detail Evaluation
We now further discuss the detailed evaluation of the aug-
mentation setting, including why and how to find the good
augmentation method for training.

Inspired by standard computer vision training pipeline, we
added several varieties to the training set. By integrating
the augmentation method into the reinforcement learning sce-
nario, some constraints must be added:

1. The augmentation must not break the consistency of the
visual content.

2. The augmentation should not be too hard for the agent
to learn.

3. The augmentation should as different from original vi-
sual content as possible to avoid over-fitting.

The first constraint came from reinforcement learning char-
acteristic that the position on visual content is crucial, using
augmentation method like rotate or flip would break the con-
sistency of visual content. Second, using the augmentation
that altered the visual content heavily would cause the agent
to fail to learn the task. And for the third point, using visual
altered augmentation prevent the agent from over-fitting and
increase the ability of the agent to tolerate noise. It is essen-
tial to find a balance between the second and third points, i.e.,
the augmentation should be as different from the original vi-
sual content as possible but not be too hard for the agent to
learn.

We conduct an experiment on a series of different augmen-
tation setting, evaluate both the distance between “with aug-
mentation” and “without augmentation” and the final perfor-
mance on the task. We perform three sets of different aug-
mentation method, including Gauss, Grid and Inverted. Each
method further test three different variation levels, the sam-
ple frames of different levels of method Gauss and Grid are
shown in Figure 1 in supplemental material , and the Invert
method levels are defined as the invert frame frequencies.

We use PSNR to evaluate the appearance distance between
game playing frames, the smaller PSNR means longer dis-



Figure 1: An overview of our transfer process. (a) We first well-trained an agent on source task environments, then (b) we train a domain
classifier and target feature encoder that have an adversarial objective to learn a map that maps target feature encoder to source feature encoder.
(c) At the testing time, we can use source task Q value predictor directly because the target feature encoder’s output features are similar to
source feature encoder. The dashed line means fixed parameters.

tance. We made some observations from this plot. First, the
stronger level of augmentation would cause the agent gradu-
ally unable to handle the task. We need to choose the one that
meets the constraints described above that the augmentation
should not be too hard for the agent to learn but as different
from normal as possible. Although all three augmentations
(Gauss, Grid and Inverted) can have good performance in
lower level setting, i.e., Gauss σ = 20, Grid 30x30 and In-
verted 30%, but the Inverted 30% is the only one that has
smallest PSNR value and remains good performance so that
it would be the better augmentation setting.

3 Experiments
In the following experiments, we evaluate the transfer effec-
tiveness of our method using the Arcade Learning Environ-
ment (ALE) [Bellemare et al., 2013]. First, we conducted an
experiment to evaluate how our method improves the trans-
fer effectiveness across synthetic variations of Pong. Second,
we experiment on a more challenging setting, i.e. transfer be-
tween different Atari games. In each experiment, we com-
pare the agent performances of following four methods:

• random baseline: train DQN directly target task with
random initialized weights.

• naı̈ve baseline: train DQN on target task with the pre-
trained weights on source task. well-trained source task
model parameters to target task network

• our method w/o augmentation: DQN with adversarial
objective trnasfer (described in Section 2.1).

• our full method: DQN with adversarial objective transfer
and frame augmentations.

3.1 Pong Variants
The first evaluation domain is a set of synthetic variants of the
Atari game “Pong”. We created synthetic variants by altering
visual appearances of the original “Pong”. The variants of
Pong are Noisy (Gaussian noise is added to the inputs), Grid
(fixed grid lines are added on input), Invert (input color is
inverted), and Scale (input is scaled by 75% and with black

Primes
gauss grid scale invert

Naı̈ve transfer Pong 2 1.3 0.96 0.12
Our w/o Augmentation Pong 2 1.79 1.75 1.47

Our Pong 2 2 2 2

Table 1: Transfer score matrix. The higher score means the better-
transfer performance. Colours indicate transfer scores (clipped at
2).

padding). The purpose of this experiment is to test whether
the agent can learn the core gameplay across its visual vari-
ants.

Figure 2 shows the transfer progress of each variant. Over-
all, our method (both with and without augmentation ver-
sions) achieve better learning progress on target task com-
pare to baseline methods. Our method saves at least 1 mil-
lions frames of training time to reach the convergence state
for Pong-grid, Pong-scale and Pong-invert.

Moreover, we measure the transfer performance by the
transfer score [Rusu et al., 2016]. The transfer score is de-
fined as the relative performance of a method compared with
the random baseline method. The Higher transfer score
means more effective transfer. A transfer score greater than
one means the performance is relatively better than the ran-
dom baseline method, i.e. positive transfer. On the contrary, a
transfer score smaller than one means the performance worse
than the random baseline method, i.e. negative transfer.

As shown in Table 1, we can observe that our method get
better transfer scores across all experiments. Interestingly,
the naive baseline (initialized with pre-trained weights on
“Pong”) obtains worst transfer score. It indicates that there
are negative transfer effects, especially for Pong-invert case.

Our method boosts the learning speed for both with and
without augmentation versions of our method. As shown
in Figure 2, we can observe that our method with augmenta-
tion learns significant faster compared to the version without
augmentation. This shows that our method with augmenta-
tion can significantly help the agent learns the core gameplay
across a single game’s visual variants.



Figure 2: Transfer progress of Pong variants. Pong variants include noisy, inverted color and scaled transforms. The results are averaged over
3 runs and the shadow represent standard deviation.

We further look closely at specified transfer pair cases. For
Pong-gauss case, the difference between source and target
task is smallest. We can observe that even the naı̈ve baseline
method provides a very good transfer effect. Although the
naı̈ve baseline method reaches max transfer scores (i.e. 2.0),
our method still outperform it on coverage time as shown in
Figure 2. For Pong-invert case, it shows that naı̈ve base-
line method fails to learn on target task, which means that the
knowledge learned from source task are hindering the agent
to learn target task. On the other hands, our method without
augmentation minimizes the negative effect because the gen-
erator will try to produce features that are similar with source
task’s features. In terms of our full method, it achieves great
performance at starting time because the source task is trained
with 30% inverted frame, in other words, the source agent has
learned Pong-invert at training time, thus it can handle this
specified case well. In general speaking, our method obtains
the best transfer result, followed by our method without aug-
mentation, and naı̈ve transfer method obtains the worst result.

3.2 Multi-level Transfer
Next, we designed a multi-level game scenario to test the ef-
fetiveness of our transfer method. It is common that for each
game, the designer designed multi-levels with increasing dif-
ficulties. Instead of training the agents separately on each
level, we use the proposed transfer learning method to in-
crease the learning speed when facing harder levels.

In our scenario, we build a multi-level version of Breakout1
with different difficulties. We designed four different levels
with increasing difficulties by shrinking the paddle width, the
different paddle widths are: 30px width (level-1), 20px width
(level-2), 10px width (level-3) and 5px width (level-4). Fig-
ure 3 in the supplemental material shows four different levels
of sample frames.

And we perform three transfer cases, including level-1 to
level-2, level-1 to level-3, and level-1 to level-4. The training
progress shown as Figure 3.

We can find that the worst performance is “Random ini-
tialize” (red dashed line) because the agent was trained from
scratch, without any prior knowledge. And all other trans-
fer methods have very good transfer effectiveness and can

1Environment source code can be found at
https://github.com/SSARCandy/breakout-env

be reached stable performance within 1 million steps. For
width 30 to width 20 (level-1 to level-2) case, the perfor-
mance of our methods (both w/ and w/o augmentation) are
better than the Naive method, and augmentation (orange line)
helps the agent to learn faster at the beginning. For width 30
to width 10 (level-1 to level-3) case, our methods still have
a noticeable boost of learning effectiveness than the naı̈ve
method. Finally, for 30 to width 5 (level-1 to level-4) case,
there is barely any difference between the naı̈ve method and
our methods. This suggested that the difficulties of the final
level (i.e. level 4) has significant different from all the pre-
vious levels. The transfer method’s performance can then be
used to identify the difficulty differences during the game de-
signing process.

4 Conclusion
In this works, we investigate the knowledge transfer for deep
reinforcement learning. Unlike previous works [Rusu et al.,
2016; Parisotto et al., 2015], that requires training multiple
agents on multiple source tasks for generalizing and transfer-
ing to target task, we proposed a method that can accelerate
the training progress on a new task with a single prior task.
Furthermore, we found that with a simple data augmentation
method, the agent can learn the target task faster. And we
demonstrated our method outperforms baselines in both easy
and challenging cases using Atari 2600 benchmark.
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