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A Practical and Fast Rendering Algorithm for
Dynamic Scenes Using Adaptive Shadow Fields

Abstract Recently, a precomputed shadow fields meth-
od was proposed to achieve fast rendering of dynamic
scenes under environment illumination and local light
sources. This method can render shadows fast by pre-
computing the occlusion information at many sample
points arranged on concentric shells around each object
and combining multiple precomputed occlusion informa-
tion rapidly in the rendering step. However, this method
uses the same number of sample points on all shells, and
cannot achieve real-time rendering due to the rendering
computation rely on CPU rather than graphics hard-
ware. In this paper, we propose an algorithm for decreas-
ing the data size of shadow fields by reducing the amount
of sample points without degrading the image quality.
We reduce the number of sample points adaptively by
considering the differences of the occlusion information
between adjacent sample points. Additionally, we also
achieve fast rendering under low-frequency illuminations
by implementing shadow fields on graphics hardware.

Keywords photo-realistic rendering · real-time render-
ing · precomputed shadow fields

1 Introduction

Creating photo-realistic images is one of the most im-
portant research topics in computer graphics and light-
ing plays an important role in it. Traditionally, peo-
ple simulated the lighting environment by placing lo-
cal light sources, such as point light sources, and area
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light sources. Recently, there are many methods using
a dome-like lighting environment (environment illumi-
nation) to create photo-realistic images. However, since
most of them use the ray-tracing method for rendering,
they need a lot of computation time.

Sloan et al. presented the precomputed radiance trans-
fer (PRT) method [23] to render a scene in real-time
under environment illumination. Then, many methods
were proposed to enhance both of the rendering qual-
ity and the computation efficiency: PRT methods using
wavelet transform [16,17], a method to compress the pre-
computed data using the principal component analysis
(PCA) [22], etc. However, these methods have a problem:
objects in the scene cannot be translated nor rotated.

Zhou et al. extended the PRT method to render dy-
namic scenes by using an environment illumination and
local light sources together and proposed the precom-
puted shadow fields (PSF) method [28]. In this method,
they precompute the shadow fields which describe the oc-
clusion information of an individual scene entity at some
sampled points arranged on concentric shells placed in
its surrounding space. When rendering dynamic scenes,
for each object, the occlusion information stored in its
shadow fields is interpolated to compute its occlusion in-
formation at an arbitrary location. Then by quickly com-
bining the occlusion information of all objects, the final
occlusion information at an arbitrary location is com-
puted efficiently. As a result, the radiance at a location
can be computed fast.

Their method has two limitations. First, they store
the shadow fields using the same number of sample points
at all the concentric shells. Second, they perform the ren-
dering on CPU that limits the performance. In this pa-
per, we propose an algorithm to solve the limitations of
the original PSF method, which includes two methods.
We observe that the occlusion information stored in the
shadow fields varies slowly with their neighbors. Hence,
we first propose a method to optimize the number of
sample points by considering the difference between the
occlusion information at the nearby sample points. To
increase the rendering performance under low-frequency



2 Naoki Tamura et al.

illuminations, we also propose a method to use shadow
fields on graphics hardware (GPU) for fast rendering.
We assume that a scene consists of triangular meshes.
Generally, if we approximate the light source and the
occlusion information for all-frequency effects, the pre-
computed data size will become large. Moreover, for cap-
turing rapid changes in radiance, it is necessary to sub-
divide the mesh data much finely. For these two reasons,
all-frequency approximation is not suitable to be used
in practical applications, such as computer games and
virtual reality. Hence, in this paper we focus on the fast
rendering under low-frequency illuminations which is suf-
ficient for practical applications.

The rest of this paper is organized as follows. Sec-
tion 2 describes the related work. Since our method is
based on the PSF method, the algorithm and limita-
tions of the PSF method are introduced in Section 3.
The details of our algorithm are explained in Section 4.
Then, Section 5 describes the implementation on graph-
ics hardware. The results are shown in Section 6 and
Section 7 describes the conclusion and future work.

2 Related work

Our method uses the dome-shaped light source and lo-
cal area light sources as the lighting environment. Since
the light sources have areas, it is important to simulate
the soft shadows. Moreover, to render a scene under the
dome-shaped light sources in real-time is related with the
precomputed radiance transfer (PRT) method. Hence,
the related work of these two categories is described in
this section.

2.1 Rendering soft shadows

Nishita et al. proposed methods [18,20] to render soft
shadows caused by linear or area light sources. More-
over, they also proposed a method [19] to calculate soft
shadows due to the dome-like sky light which is similar
to the environment illumination. However, to use their
methods to generate soft shadows needs a lot of calcula-
tion, and thus it is difficult to render in real-time.

Recently, there are many methods have been pro-
posed for quickly calculating soft shadows by using GPU,
which can be divided into the shadow map [27] based
methods and the shadow volume [4] based ones. Heckbert
and Herf used the shadow map method to project mul-
tiple shadows to the object and then combine the pro-
jected shadows to calculate soft shadows [6]. Heidrich et
al. proposed a method to use GPU to calculate soft shad-
ows caused by linear light sources [7]. In their method,
they first put several sample points on the linear light
source, and use the shadow map method to project the
shadows to the object from the sample points. Then, the
soft shadows are calculated by summing the generated

shadows. Soler and Sillion presented a method to cal-
culate soft shadows by using the fast fourier transform
(FFT) method [25]. Agrawala et al. proposed a method
to calculate soft shadows in screen space [1], but their
method did not focus on the real-time calculation.

Akenine-Moller and Assarsson extended the shadow
volume method to render soft shadows by using GPU
[2,3]. However, the calculation of their methods depends
on the geometric complexity of the scene. Hence, it is
difficult to calculate the soft shadows of a complex scene
efficiently. In addition, their methods did not deal with
the environment illumination. A fast soft shadows algo-
rithm for ray tracing was proposed by Laine et al. [13].
This method, however, does not compute soft shadows
in real-time.

2.2 Precomputed radiance transfer

Dobashi et al. used basis functions for fast rendering un-
der skylight [5]. Ramamoorthi and Hanrahan proposed
a method to render a scene under environment illumina-
tion in real-time by using the spherical harmonics (SH)
basis [21]. However, their method did not take the shad-
ows into account. To extend their method, Sloan et al.
proposed the PRT method [23] which can render the
soft shadows, inter-reflections, and caustics in real-time.
Then, to improve the PRT method, Kautz et al. pre-
sented a method for arbitrary bidirectional reflectance
distribution function (BRDF) shading [10], and Lehti-
nen and Kautz proposed a method to efficiently render
the glossy surfaces [14]. Moreover, Sloan et al. proposed
a method to compress the precomputed data by using
the principal component analysis (PCA) [22], and also
a method to render with the PRT method and bidi-
rectional texture function (BTF) together [24]. Further-
more, Ng et al. used wavelet transform for all-frequency
relighting [16,17]. However, in these methods, the ren-
dering objects cannot be translated nor rotated in the
precomputed scene.

James and Fatahalian applied the PRT method to
capture several scenes, and then they can interpolate
them to simulate the translation, rotation, and deforma-
tion of the objects in the scene [8]. However, the transfor-
mation of the objects is limited to the ones captured at
the preprocessing step. Mei et al. used the spherical radi-
ance transport maps (SRTM) to make the object being
able to have free translation and rotation [15]. However,
in their method, the radiances of the vertices are cal-
culated by using CPU only, and thus the performance
is not so good. Since the SRTM needs many texture im-
ages while rendering, it is difficult to shift the calculation
to GPU. Hence, their method cannot render a complex
scene fast. Kautz et al. used hemispherical rasterization
for all vertices and all frames under environment illumi-
nation and made the object capable of free deformation
[9]. However, for a complex scene, the calculation is too
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(a) (b)

Fig. 1 The concept of the precomputed shadow fields (PSF) method. (a) Precomputation of the shadow fields. (b) The
calculation of the occlusion information due to other objects at point p.

complex to render the scene in real-time even after apply-
ing several optimizations. The method for fast rendering
of soft shadows in dynamic scenes which distinguished
between self-shadow and shadows cast by other objects
was proposed by Tamura et al. [26]. This method, how-
ever, cannot deal with local light sources. Efficient soft
shadows rendering under ambient light was proposed by
Kontkanen et al. [12]. However, this method cannot take
into account the illumination from distant lighting and
local light sources.

Zhou et al. proposed the PSF method which precom-
puted the shadow fields to store the occlusion informa-
tion of some sample points arranged on concentric shells
placed at the surrounding of the object. When rendering,
by quickly combining the occlusion information stored in
the shadow fields, they can render dynamic scenes which
may contain several objects [28]. In their method, how-
ever, they use the same number of sample points at all
shells. In this paper, we present a method to adaptively
sample the shadow fields and thus our method reduces
the data size of the shadow fields. Moreover, we present
a GPU implementation for rendering using shadow fields
under low-frequency illuminations. Hence our method
can be used for practical applications, such as computer
games and virtual reality.

3 Original precomputed shadow fields

In this section, we describe the overview and the limita-
tions of the original PSF method [28].

3.1 Overview

In the PSF method, the shadow fields of each local light
source and object, which will be translated and rotated,
are precomputed as Fig. 1(a). To calculate the shadow
fields, concentric shells are placed at the surroundings of
the object. Then, a large number of sample points are
generated on each shell, and the object occlusion field
(OOF) and source radiance field (SRF) of the object are
calculated at each sample point. The occlusion and ra-
diance information at each sample point are calculated
in longitude φ and latitude θ directions. The calculated

information is approximated using spherical harmonics
as [23] or using Haar wavelet transform as [16]. Different
approximation methods will cause different qualities of
shadows, rendering performance, and memory consump-
tion. Furthermore, the self-occlusion (occlusion due to
its own geometry) of each point is also precomputed.

To render using shadow fields, the radiance at each
vertex is first calculated. Then, the scene is rendered by
interpolating the radiance at each vertex. The occlusion
information due to other objects during the radiance cal-
culation is calculated by referring to the shadow fields as
shown in Fig. 1(b). The occlusion information of object A
at point p is calculated by interpolating the information
at the sample points near p. The occlusion information
due to more than one object is combined by using the
triple product [17].

In the original PSF method, the locations of sample
points are decided by projecting a cubemap to concentric
shells. Cubemap based scheme is indeed efficient on sam-
pling distribution, however, it is difficult to keep contin-
uous interpolation near the cube edges when we optimize
the sample points on each cubemap face independently.
To simplify the interpolation, we employ polar coordi-
nates model for the locations of sample points. In our
method, the coefficient vectors of the orthonormal basis
transformed from the occlusion information (one dimen-
sional array under the occlusion information in Fig. 1)
are called occlusion coefficient vectors (OCV). As for the
source radiance information, we call them radiance coef-
ficient vectors (RCV).

3.2 Limitations

The PSF method proposed by Zhou et al. [28] has the
following two limitations:

– Same number of sample points at all shells. If we set
the sampling resolution R in φ and θ directions on C
concentric shells and each sample point stores OCV
with E elements where each element needs D byte,
in the case of fix sampling resolutions, the data size
of the shadow fields is C × R2 × E × D bytes.

– Relatively low-rendering performance due to the com-
putation using only CPU.
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(a) (b)

Fig. 2 Optimization of the number of sample points. (a) Previous method [28] uniformly put the sample points (left), but
our method considers the variation of the occlusion information among the neighboring sample points to optimize the number
of sample points (right). (b) Reducing the number of sample points by halving the sampling resolution in each direction
(left) and checking if the new sample points (blue points) can approximate the initial sample points (red points) (right).

4 Adaptive shadow fields

In this section, the adaptive sampling method for the
OOF is described. The SRF can also be adaptively sam-
pled by using the same method.

Based on our observation, the occlusion information
stored in the shadow fields varies slowly. Therefore, we
can reduce the data size of the shadow fields by removing
some unnecessary sample points at each concentric shell
respectively (Fig. 2(a)). We perform the optimization of
sample points at each shell independently.

The details of the algorithm for optimizing the num-
ber of sample points at each concentric shell is as follows
(see Fig. 2(b)).

1. Set the initial sample points on the shell with res-
olution R, that is, R×R sample points (red points).

2. Compute the occlusion information at all initial sam-
ple points and transform them to OCV O. We use
spherical harmonics for low-frequency shadow fields
and Haar wavelet transform for all-frequency shadow
fields.

3. Arrange the new sample points on the shell with
R/2 × R/2 sample points (blue points).

4. Calculate the OCV Ō of the new sample points by
linearly interpolating the occlusion information con-
tained in its four nearest initial sample points.

5. Obtain the OCV Õ of each initial sample point by lin-
early interpolating its four nearest new sample points
(however, we use the nearest point for the corner, and
the two nearest points for the boundary).

6. Calculate the difference between OCV Õ and OCV
O using Equation (1).

Error(s, t) =
1

4π

∫

Ω

|

G−1
∑

g=0

Õg(s, t)Ψg(ω)−

G−1
∑

g=0

Og(s, t)Ψg(ω)|dω, (1)

where Ψ is the basis function (spherical harmonics or
wavelet), G is the number of the basis functions, 1

4π
is the normalization term, and s and t are the indices
of sample points in θ and φ directions, respectively.

7. For all the initial sample points, if the differences are
lower than a specified threshold, the initial sample
points are replaced with the new sample points, then
halve the value of R and return to Step 3. The thresh-
old will be explained in Section 6.1.

To perform the optimization recursively, we keep the
number of sample points to be power of two. In our im-
plementation, we set R = 64 in the initial state. By re-
placing the OCV with the RCV, we can use the above
mentioned algorithm to adaptively sample the SRF.

5 GPU implementation

Our GPU implementation is for rendering using shadow
fields whose OCV and RCV are approximated using four-
th order spherical harmonics (16 bases), where each spher-
ical harmonics coefficient is quantized to 8-bits. Fig. 3
shows the outline of the radiance computation using shad-
ow fields. Since the radiance computation of each vertex
v is independent of each other, it is possible to perform
the computations in parallel and is hence suitable for
GPU implementation. The underlined parts in the fig-
ure are performed on GPU.

In our method, we first prepare radiance texture TB

and vertex array texture TL with sizes N ×N (N2 > the
number of vertices) for each object. We then use CPU to
perform the visibility culling operation to calculate the
visible vertex array L and store it in TL. Next, we make
the one-to-one correspondence between the k-th vertex
vk of L and the texel (x, y) of TB , where x = k mod N
and y = bk/Nc. After this operation, we perform the cal-
culation of each individual vertex to be that of each texel,
and most of the radiance computations are transferred
to GPU as shown in Fig. 3. Finally, the radiance of each
vertex of L is stored in TB . In the rendering stage, we
use vertex shader to reference the correspondence texel
in TB to obtain the vertex color.

To perform GPU based radiance computations, we
have to keep Uv, Sj and Oj on GPU. We use the Frame
Buffer Object (FBO) extension [11] to keep them. In our
implementation, one FBO F is created and the e-th ele-
ment of each Uv, Sj and Oj is stored in the (e mod 4+1)-
th channel at the (e/4+1)-th COLOR ATTACHMENT
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// TB : the exitant radiance texture //
// Ov : the self-occlusion information at vertex v //
// ρ̃ : the product of the BRDF and a cosine term //
rotate distant lighting Sd to align with global coordinate frame
For each entity I that is an object do

L = visible vertices of I that are visible from camera
compute distance from center of I to each scene entity
sort entities in order of increasing distance
For each visible vertex v in L do

TB(v) = 0

Uv = TripleProdut(Ov, ρ̃)

rotate Uv to align with global coordinate frame
For each entity J do

If J is a light source
calculate RCV Sj(v)

rotate Sj(v) to align with global coordinate frame

TB(v)+ = DoubleProduct(Sj(v), Uv)

Else

calculate OCV Oj(v)

rotate Oj(v) to align with global coordinate frame

Uv = TripleProduct(Oj(v), Uv)

End If

End For

TB(v)+ = DoubleProduct(Sd, Uv)

End For

End For

Fig. 3 Outline of the rendering process. The underlined
parts are performed in GPU.

[11] of F . If we try to operate the computation of K-
th order spherical harmonics on GPU, one FBO with
⌈

K2/4
⌉

COLOR ATTACHMENTs is needed. Current
maximum number of the available COLOR ATTACH-
MENT is four. Thus, our GPU based radiance compu-
tation is restricted to fourth order spherical harmonics
due to hardware capability.

The underlined parts in Fig. 3 mainly consist of the
following four computations.

1. Reconstruct the OCV (RCV) of each object (light
source) at each vertex from the adaptive shadow fields.

2. Rotate the axes of the local coordinates of the OCV
(RCV) to the axes of global coordinates.

3. Combine the OCVs by calculating the triple product.
4. Compute the radiance by calculating the double prod-

uct of coefficient vectors.

The details of Step 1 and Steps 2, 3, 4 are described in
Section 5.1 and Section 5.2, respectively. Moreover, the
culling operation and sorting of occluders are explained
in Section 5.3.

5.1 Reconstruction of the OCV (RCV) on GPU

Fig. 4 shows the outline of the OCV reconstruction pro-
cess. In our method, we first convert the visible vertex v
of target object I to coordinates vJ at the local coordi-
nates of the occluder J . Then, we calculate the nearest
two concentric shells H1,H2 at vJ . For each H, we refer
to the OOF to compute the OCV by interpolating the
OCV at the nearest four sample points. Furthermore, the
computed OCV at each shell is interpolated according to
the distance from vJ to H1,H2. The process here is fully

// I : target object, J : occluder object //
Input:

t texture coordinates of screen pixel
Output:

O OCV
Constants:

Mt transformation matrix from local coordinates
to global coordinates of I

Mr inverse transformation matrix from global coordinates
to local coordinates of J

Vr radius of the bounding sphere J

Vsr smallest radius of the first concentric shell of J

Vi distance between the shells of J

C the number of shells of J

Texture:

TL visible vertex position data
TO shadow fields data (8 bit quantized), 4 textures
Tq quantization constant data (min value and step value), 4 textures

Note:
TextureFetch(T, u) texture fetch from texture T using texture coordinates u

O = 0
local vertex position vl =TextureFetch(TL, t)
global vertex positon vw = Mt × vl
vJ = transform vw to local coordinates of J by using Mr
calculate the spherical coordinates tJ of vJ
calculate nearest two concentric shells H1, H2 by using vJ , Vr , Vsr , Vi, C

For each H do

calculate weight w of H

min, step = TextureFetch(Tq, tJ )
coeff = TextureFetch(TO, tJ )
O += w * ( coeff * step + min )

End For

Fig. 4 Outline of our OCV reconstruction fragment shader.

Fig. 5 The concept of texture storage for the adaptive
shadow fields.

performed on a fragment shader, and hence can obtain
high performance. The RCV reconstruction is also per-
formed as the OCV.

To realize the computation in Fig. 4, the data of the
adaptive shadow fields have to be stored in textures TO.
To construct TO, we first create the texture T c

O to store
the OCVs of the c-th (c < C) concentric shell, which
has Rc × Rc sample points (that is, Rc is the sampling
resolution at the c-th shell). To create T c

O, we use four
RGBA (four channels) textures (size : Rc × Rc + 2).
For keeping continuous interpolation at the boundaries
of φ direction, we allocate extra texels on T c

O borders
and the OCVs at the boundary are duplicated to the
other boundary. On each texture, the e-th (e : 0, ..., 15)
element of the OCV of a sample point (s, t : 0, ..., Rc−1)
is stored in the (e mod 4 + 1)-th channel of the (s, t + 1)
texel at the (e/4+1)-th texture of T c

O. In the extra texels
(s, 0) and (s,Rc + 1), we duplicate the OCV of sample
points (s,Rc − 1) and (s, 0), respectively.

After creating T c
O for all concentric shells, all T c

O are
packed to construct TO as shown in Fig. 5. As described
in Section 4, Rc is different for each concentric shell. In
our packing method, we sort the T c

O according to Rc to
tile T c

O as a rectangle. Although this Rc packing method
may have some gaps, it does not pose a memory con-
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#define SQRT6_4 0.61237243569579447

#define SQRT10_4 0.79056941504209488

#define SQRT15_4 0.96824583655185426

half4x4 shRotXp16( const half4x4 src )

{

half4x4 dest; // rotated SH coefficients //

dest[ 0 ].r = src[ 0 ].r; dest[ 0 ].g = -src[ 0 ].b;

dest[ 0 ].b = src[ 0 ].g; dest[ 0 ].a = src[ 0 ].a;

// ... calculate dest[ 1 ].r - dest[ 2 ].a ... //

dest[ 3 ].r = -SQRT10_4 * src[ 2 ].g - SQRT6_4 * src[ 2 ].a;

dest[ 3 ].g = -0.25 * src[ 3 ].g - SQRT15_4 * src[ 3 ].a;

dest[ 3 ].b = SQRT6_4 * src[ 2 ].g - SQRT10_4 * src[ 2 ].a;

dest[ 3 ].a = -SQRT15_4 * src[ 3 ].g + 0.25 * src[ 3 ].a;

return dest;

}

half4x4 shRotXn16( const half4x4 src )

{

// ... abbreviated ... //

}

half4x4 shRotZ16( const half4x4 src, const half2 sinCos )

{

// ... abbreviated ... //

}

half4x4 SHRotate16( half4x4 src, half2 alpha, half2 beta, half2 gamma )

{

half4x4 temp1, temp2;

temp1 = shRotZ16( src, gamma );

temp2 = shRotXn16( temp1 );

temp1 = shRotZ16( temp2, beta );

temp2 = shRotXp16( temp1 );

temp1 = shRotZ16( temp2, alpha );

return temp1;

}

Fig. 6 nVIDIA Cg fragment shader code for the fourth order
spherical harmonics rotation.

sumption problem since we only take low-frequency data
into consideration in our GPU implementation and the
memory consumption is relatively small. Furthermore, in
this packing method, since T c

O are usually preserved as
a rectangle, we can use the bilinear interpolation func-
tions on GPU to efficiently interpolate four points when
performing TextureFetch(TO, tJ ) in Fig. 4. Since T c

O in
TO is arranged according to the size of Rc, we use an
additional address texture to store the position of T c

O on
TO.

Since TO is quantized to 8-bits, it is necessary to cre-
ate four RGBA textures Tq (size : 2 × C) to store the
minimum value and step of quantization for the restora-
tion of the OCV on GPU. Hence, we store the minimum
value of the e-th element of the c-th concentric shell as
the (e mod 4 + 1)-th element of the texel (1, c) on the
(e/4+1)-th texture of Tq. The step value is stored in the
position (2, c).

5.2 SH rotation, double product, and triple product

We use the ZXZXZ Rotation method [10] to perform the
spherical harmonics rotation. Fig. 6 shows the portions
of our nVIDIA Cg fragment shader code to compute the
spherical harmonics rotation. The number of total in-
structions of the shader is 137. Since the values of alpha,
beta, gamma in Fig. 6 depend only on the amount of
rotation of the object, that means their values are the
same for all the vertices, we hence compute their values
on CPU and set them as the shader constants.

half4x4 tripleProductSH16( half4x4 coeff1, half4x4 coeff2 )

{

half4x4 projCoeff; // resulting basis coefficients //

// ... calculate coefficients of the first - ninth basis ... //

// calculate coefficient of the tenth basis //

projCoeff[ 2 ].g = 0.282095 * ( coeff1[ 0 ].r * coeff2[ 2 ].g +

coeff1[ 2 ].g * coeff2[ 0 ].r );

projCoeff[ 2 ].g += 0.226179 * ( coeff1[ 0 ].g * coeff2[ 2 ].r +

coeff1[ 2 ].r * coeff2[ 0 ].g );

projCoeff[ 2 ].g += 0.226179 * ( coeff1[ 0 ].a * coeff2[ 1 ].r +

coeff1[ 1 ].r * coeff2[ 0 ].a );

projCoeff[ 2 ].g += -0.094032 * ( coeff1[ 1 ].r * coeff2[ 3 ].g +

coeff1[ 3 ].g * coeff2[ 1 ].r );

projCoeff[ 2 ].g += 0.148677 * ( coeff1[ 1 ].g * coeff2[ 3 ].b +

coeff1[ 3 ].b * coeff2[ 1 ].g );

projCoeff[ 2 ].g += -0.210261 * ( coeff1[ 1 ].b * coeff2[ 2 ].g +

coeff1[ 2 ].g * coeff2[ 1 ].b );

projCoeff[ 2 ].g += 0.148677 * ( coeff1[ 1 ].a * coeff2[ 2 ].b +

coeff1[ 2 ].b * coeff2[ 1 ].a );

projCoeff[ 2 ].g += -0.094032 * ( coeff1[ 2 ].r * coeff2[ 2 ].a +

coeff1[ 2 ].a * coeff2[ 2 ].r );

// ... calculate coefficients of the eleventh - sixteenth basis ... //

return projCoeff;

}

Fig. 7 nVIDIA Cg fragment shader code for the fourth order
spherical harmonics triple product.

To compute the double product of the coefficient vec-
tors on GPU, we employ the vector dot product com-
mand provided in the fragment shader. Since there are
16 coefficients, we compute the dot product on every 4
coefficients and sum up the results.

As mentioned in Ng et al.[17] and Zhou et al.[28], the
number of the non-zero tripling coefficients of the fourth
order spherical harmonics are relatively small (77). There-
fore, we determine all the non-zero tripling coefficients
and use them to compute the projection coefficients.
Fig. 7 shows some portions of the fragment shader code
for performing the triple product. The number of total
instructions of the shader is 415.

5.3 Culling and sorting

As in the original PSF, we perform the visibility culling
for the vertices of each object on CPU. We cull the ver-
tices outside the view volume and the vertices which do
not belong to the front face triangles. The vertices that
passed the culling test are put in visible vertex array L.
The coordinates of the vertices in L are then put in TL

and the correspondences between the vertices in L and
the texels in radiance texture TB are redetermined. Since
the number of vertices in L (referred as |L|) differs for
every objects and in every frames, for efficient computa-
tion, we only execute the pixel shader on a rectangular
region with width N and height |L|/N . The array of the
self-occlusion information Ov of the vertices in L are also
stored in textures in every frame.

Since for each object, we compute the radiances of
its vertices simultaneously on GPU, to efficiently per-
form the radiance computations, for each object, we sort
its occluders and use the results when computing the ra-
diance of all its vertices. However, if the object is very
large, the sorting results may not applicable at some of
the vertices. To avoid this problem, for large objects, we
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divide the mesh into several sub-meshes and perform the
radiance computation in the unit of sub-mesh.

6 Results

In this section, we show the rendering results using adap-
tive shadow fields. In our experiments, we use a desktop
PC with a Intel Pentium D 3.0GHz CPU and a GeForce
7800GTX GPU. The occlusion and the radiance infor-
mation are computed as maps with resolution 64 × 64.
For low-frequency shadow fields, we use 32 concentric
shells and 64 × 64 sample points as the initial sampling
resolution. The information in the shadow fields is ap-
proximated using the fourth order spherical harmonics
with 16 coefficients, where each coefficient is quantized
to 8 bits. For all-frequency shadow fields, we use 32 con-
centric shells and 64 × 64 sample points as the initial
sampling resolution. The information is approximated
using wavelets and 5% of the largest coefficients are kept,
where each coefficient is also quantized to 8 bits. The
center of the concentric shells is placed at the center of
the object and the radius of the c-th (c = 0, ..., 31) shell
is 0.2Vr(1 + c), where Vr is the radius of the bounding
sphere of the object.

6.1 Determining the threshold values

In order to determine the threshold value to be used
when we optimize the number of sample points, we per-
formed several experiments as follows. We made a scene
consisting of three different types of objects, that is,
an almost isotropic object (a teapot), a long object (a
statue), and a plane (thin rectangular solid). Then, we
rendered it by varying the threshold using non-adaptive
and adaptive, low- and all-frequency shadow fields. The
results are shown in Fig. 8. We can notice the difference
between the images generated by non-adaptive shadow
fields and adaptive shadow fields when setting the thresh-
old to 0.020, but the difference is not notable when seting
the threshold to 0.010. Therefore, we set the threshold
to 0.010 for all the rest of the examples presented in this
section.

6.2 Optimal sampling resolutions

Table 1 shows the sampling resolutions at the concentric
shells of the shadow fields of the three objects described
in Section 6.1. The shells are sorted in order of increasing
radius. For each object, the upper and the lower row
are the results for low-frequency (L) and all-frequency
(A) shadow fields, respectively. Table 2 shows the data
sizes of the shadow fields. By using adaptive sampling,
generally, we achieve about 60% - 70% and 40% - 45%
reduction on the data sizes of the low-frequency and all-
frequency shadow fields, respectively. The reason why

Table 1 Optimal number of sample points.

Sampling resolution Rc at the shells
Teapot (L) 8 64 64 64 64 64 64 64 64 32 32 32 16 16 16 16

16 16 8 8 8 8 8 8 8 8 8 8 8 8 8 8
Teapot (A) 8 64 64 64 64 64 64 64 64 64 64 64 64 64 32 32

32 16 16 16 8 8 8 8 8 8 8 8 8 8 8 8
Statue (L) 64 64 64 64 64 64 64 64 32 16 16 16 16 8 8 8

8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
Statue (A) 64 64 64 64 64 64 64 64 64 64 32 32 16 16 8 8

8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
Plane (L) 64 64 64 64 64 64 64 64 64 64 64 32 16 16 16 16

16 16 16 8 8 8 8 8 8 8 8 8 8 8 8 8
Plane (A) 64 64 64 64 64 64 64 64 64 64 64 64 64 32 32 32

16 16 16 8 8 8 8 8 8 8 8 8 8 8 8 8

Table 2 The data sizes of the shadow fields.

Fix sampling Adaptive sampling
(MB) (MB)

Teapot (L) 2.0 0.59
Teapot (A) 21.9 13.0
Statue (L) 2.0 0.55
Statue (A) 21.3 11.7
Plane (L) 2.0 0.75
Plane (A) 19.5 11.9

Table 3 The total data sizes of the shadow fields and the
rendering performances.

Sizes of SF CPU GPU
(MB) (fps) (fps)

Statues 4.6 4 - 18 70 - 100
Bowling 4.2 1 - 3 30 - 40
Falling objects 12.9 0.5 - 1 12 - 16

the first shell of the teapot has the smallest resolution is
that all sample points of the shell are located inside the
teapot, and thus the differences of occlusion information
are everywhere zero. Note that in our implementation
for low-frequency shadow fields, we use 32 shells, each
consisting of 4,096 samples, and each sample has an OCV
at size 16 bytes. Therefore, the data size of our non-
adaptive low-frequency shadow fields is 32×4, 096×16 =
2 MB.

6.3 Rendering results

Fig. 9 - 11 show the rendering results using our algo-
rithm. We rendered three scenes while changing the en-
vironment illumination and moving the objects. The ob-
jects are moved by user in Fig. 9, and by rigid body
simulation in Fig. 10 and 11. For the rigid body simula-
tion, we use the PhysX Engine1. The statues scene (Fig.
9) has 6 objects and 32,875 vertices, the bowling scene
(Fig. 10) has 15 objects and 41,340 vertices, and the
falling objects scene (Fig. 11) has 20 objects and 88,739
vertices. For the statues and the falling objects scenes,
some of the objects have glossy BRDF. For the bowling

1 Ageia (PhysX Engine): http://www.ageia.com/
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(a)

(b)

Fig. 8 Determining the threshold values for (a) low-frequency shadow fields and (b) all-frequency shadow fields. The images
from left to right are the result of using non-adaptive shadow fields (for comparison) and the results of using adaptive shadow
fields and setting the threshold to 0.020, 0.010, 0.005, respectively. The images at the bottom show the differences (scaled
15 times) between the result of non-adaptive shadow fields and the results of adaptive shadow fields.

scene, during the animation, we changed the BRDF of
the ball to glossy BRDF.

Table 3 shows the total sizes of the shadow fields
and the comparison of the rendering performances using
CPU and GPU of the three scenes. It is obvious that
using the proposed GPU implementation, we were able
to significantly speed up the rendering process.

7 Conclusion and future work

In this paper, we have presented an algorithm for adap-
tively sampling the shadow fields and for fast render-
ing of dynamic scenes under environment illumination
and local light sources. Concretely, we solved the limita-
tions of the original PSF method. We decrease the data
size of shadow fields by reducing the amount of the pre-
computed data, since the difference between the nearby
precomputed data is small. Thus, we can adaptively op-
timize the number of sample points of the shadow fields.
Furthermore, we realize the fast radiance computation

under low-frequency illuminations by implementing the
PSF method on GPU.

The next thing to do is to explore the possibility of
compressing the all-frequency shadow fields. We also be-
lieve that our algorithm can be extended to adaptively
control the number of the concentric shells.
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