

3D Model Streaming Based on JPEG 2000

Nein-Hsien Lin, Ting-Hao Huang, and Bing-Yu Chen, Member, IEEE

Abstract — For PC and even mobile device, video and

image streaming technologies, such as H.264 and
JPEG/JPEG 2000, are already mature. However, the
streaming technology for 3D model or so-called mesh data is
still far from practical use. Therefore, in this paper, we
propose a mesh streaming method based on JPEG 2000
standard and integrate it into an existed multimedia
streaming server, so that our mesh streaming method can
directly benefit from current image and video streaming
technologies. In this method, the mesh data of a 3D model is
first converted into a JPEG 2000 image, and then based on
the JPEG 2000 streaming technique, the mesh data can then
be transmitted over the Internet as a mesh streaming.
Furthermore, we also extend this mesh streaming method
for deforming meshes as the extension from a JPEG 2000
image to a Motion JPEG 2000 video, so that our mesh
streaming method is not only for transmitting a static 3D
model but also a 3D animation model. To increase the
usability of our method, the mesh stream can also be
inserted into a X3D scene as an extension node of X3D.
Moreover, since this method is based on the JPEG 2000
standard, our system is much suitable to be integrated into
any existed client-server or pear-to-pear multimedia
streaming system1.

Index Terms — Mesh Streaming, JPEG 2000, Geometry
Image, X3D.

I. INTRODUCTION
Recently, 3D graphics over the Internet has attracted a lot

of attention, such as web-based virtual shopping malls, on-line
3D games, etc. For supporting these applications, the demand
of transmitting 3D models increased significantly. Being able
to view or play a 3D model or a 3D scene composed of many
sophisticated 3D models over the Internet is one of the goals
of VRML (Virtual Reality Modeling Language) [16] and X3D
(eXtensible 3D) [20]. However, due to the increase of the
model complexity and file size, even with the increase of
network bandwidth, to download the 3D models would still
take a lot of time. To reduce the waiting time for downloading
the 3D models, mesh streaming mechanism must be available

1 This work is partially supported by the National Science Council of
Taiwan under the numbers: NSC92-2218-E-002-056, NSC93-2622-E-002-033,
NSC94-2622-E-002-024, and NSC95-2221-E-002-273.

Nein-Hsien Lin is with the National Taiwan University (e-mail:
ppbb@cmlab.csie.ntu.edu.tw).

Ting-Hao Huang is with the National Taiwan University (e-mail:
richardg@ cmlab.csie.ntu.edu.tw).

Bing-Yu Chen is with the National Taiwan University (e-mail:
robin@ntu.edu.tw).

as what has been done in the video and image streaming.
Therefore, in this paper, we propose a mesh streaming

method by utilizing the benefits of JPEG 2000 (J2K) [17].
This method takes the advantages of geometry image [5]
which can convert the mesh data of a 3D model into an image.
This could reduce the problem of 3D mesh streaming and
transfer it to a 2D image streaming problem. There are also
many 2D image compression methods that can be used to
further downsize the file of the geometry image. This paper
made use of the JPEG 2000 compression due to some of its
good characteristics, such as ROI (Region Of Interest),
progressive compression, multiple components, etc. Moreover,
since this method is based on JPEG 2000, which is a famous
standard, our system is much suitable to be integrated into any
existed client-server or pear-to-pear multimedia streaming
system.

Based on our mesh streaming method, during the
downloading process, the user can first obtain an approximate
shape and then the 3D model will become clearer when more
data is received. Besides the progressive transmission, the
view-dependent issue is also taken into consideration. Hence,
the most significant part of the 3D model or the part faced to
the user will be refined earlier. Furthermore, since the 3D
animation models or so-called deforming meshes are used
more frequently than static 3D models, we also extent our
mesh streaming method for transmitting a 3D animation
model as a deforming meshes streaming by converting a 3D
animation model into a Motion JPEG 2000 video. To increase
the usability of our mesh streaming method, the 3D model or
3D animation model represented by a JPEG 2000 image or a
Motion JPEG 2000 video can be inserted into a X3D scene as
an extension node of X3D.

This paper is organized as following. In Section II, the
related work is introduced. In Sections III and IV, we describe
the details of our mesh streaming method and the network
architecture of our mesh streaming system. Sections V and VI
illustrate the results and a short discussion on the future work
of this method.

II. RELATED WORK
In this session, we first introduce some background related

to the main themes of this paper including 3D streaming,
geometry images, and image compression.

A. Mesh Streaming and Compression
In general, the main goal of mesh streaming is to provide

3D contents in real-time for users over the network links, such

that the interactivity and visual qualities of the contents may
match as closely as when they were stored locally. The
resource bottleneck is often assumed to be the bandwidth and
not rendering or processing power [14]. To achieve this,
simplification and progressive transmission are two dominant
strategies [12]. Existing mesh streaming techniques may be
categorized into four main types [3], and in this paper the
main point we focus is about the object streaming using
geometry images.

Hoppe introduced the concept of progressive meshes (PM)
 [6], which store an arbitrary triangular mesh M as an
appearance-preserving but much coarser base mesh 0M and a
number of refinement pieces constructed by using iterative
edge collapse operations. Then, the 3D model can be
represented as 0M , 1M , 2M , ..., n =M M , where 1M , 2M , ...,
and nM are the refined multi-resolution meshes by splitting
one vertex in the previous meshes 0M , 1M , ..., 1n−M . A user
in the client may view or interact immediately with the 3D
model once the base mesh 0M is downloaded. Streaming
additional parts incrementally refines the mesh and restores
the original mesh n =M M exactly. Geometrical meshes thus
can be streamed from servers to clients, making interactions
with 3D data possible without a complete download [2].

A different concept introduced by Isenburg and Lindstrom
is streaming meshes (SM) [9]. They reorganize the triangle
mesh, so that highly spatial related triangles are packed with
each other in the file. While rendering a triangle, other
triangles close to it will be found locally in the file, thus
avoids most file seek system calls. So we can see this mesh
clearly from some parts to entire. The main goal of this
scheme is designed for memory out-of-core situation.

The third concept is to compress the 3D model [15].
Originally this technique is designed for the limited bandwidth
between CPU and GPU, but it can also be used for network
transmission. There are two categories of mesh compression:
geometry compression and connectivity compression, where
the geometry compression dominates the final file size. To
compress a 3D model, the vertex data is first quantized, and
then some predictions based on observations are made. These
predictions can provide clues for entropy/arithmetic coding.

In this paper, we use the properties of JPEG 2000 to
combine the concepts of PM and SM, so that a remote user
can view the 3D model not only progressively but also clearly
from user’s viewpoint.

B. Parameterization and Geometry Image
Surface parameterization is to find a mapping function

3 2F : ↔R R which maps 3D coordinates (, ,)x y z to 2D
coordinates (,)s t , i.e., F(, ,) (,)x y z s t= . Geometry images [5]
provided by Gu et al. is one of the surface parameterization
methods. In this method, given a 3D model, we can use a 2D
image to represent it, where the R, G, B values (, ,)i i iR G B of
each pixel i of the image are used to represent the 3D
coordinates (, ,)i i ix y z , normal vectors (, ,)

i i ix y zN N N , or texture

coordinates (,)i iu v of the vertex i . Hence, the number of
vertices N of the reconstructed 3D model will be the same as
the resolution of the geometry image w h× , i.e., N w h= × .

To reconstruct the 3D model from a geometry image, we
first convert the R, G, B values (, ,)i i iR G B of each pixel i of
the geometry image to be vertex positions (, ,)i i ix y z of vertex
i . Then, we connect the vertex i to its horizontal and vertical
neighbors to be several quadrangles, and then we choose the
shorter distance between the two diagonals of each quadrangle
and connect the opposite vertices. Hence, the reconstructed
3D model can be represented as a triangular mesh. Finally, the
vertex attributes, such as normal vectors (, ,)

i i ix y zN N N or
texture coordinates (,)i iu v , can also be assigned to the vertex
i .

To extend the geometry images for 3D animation model or
so-called deforming meshes, Briceño et al. present geometry
videos [1] to provide a new data structure to encode
deforming meshes. Their data structure provides a way to treat
deforming meshes as a video sequence and is well suitable for
network streaming. They also offer the possibility to apply
and adapt existing mature video processing and compression
techniques, such as MPEG.

C. JPEG 2000 and JPIP

(a)

(b)

(c)

(d)

Fig. 1. The four types of progression provided by JPEG 2000: (a)
progression by quality; (b) progression by locality; (c) progression by
component; (d) progression by resolution.

The JPEG 2000 standard supports lossy and lossless

compression of single-component (e.g., grayscale) and multi-
component (e.g., color) imagery. In addition to this basic
compression functionality, however, numerous other features

are provided, including: (a) progressive recovery of an image
by resolution, image quality, component, and locality; (b) ROI
coding, whereby different parts of an image can be coded with
differing fidelity; (c) random access to particular regions of an
image without needing to decode the entire code stream. Due
to its excellent coding performance and many attractive
features, JPEG 2000 has a very large potential application
base and can be used for image archiving, Internet, web
browsing, document imaging, digital photography, medical
imaging, remote sensing, and desktop publishing. Fig. 1
illustrates how the four types of progression work.

The high flexibility of JPEG 2000 code stream provides
many possible applications, especially for browsing image file
on the Internet. JPIP (JPEG 2000 Internet Protocol) [18] is a
protocol which is implemented on top of HTTP (HyperText
Transfer Protocol) and facilitates the flexibility of JPEG 2000.
Suppose that a user is browsing a large image file, for
example the satellite image of a city, by using a JPIP
compatible browser. The user may first view the image block
which contains only one building. In this situation, only the
code stream which corresponds to the building is needed to be
transferred, and the server does not have to transmit the
remaining code stream. After the user scroll the image, a new
request for JPEG 2000 code stream is sent from the client, and
the server will return the corresponding image data that the
user wants to see.

In this paper, since the mesh data of a 3D model is
converted into a JPEG 2000 image, the mesh streaming
mechanism can then be integrated into a JPIP server. Hence,
the JPIP server can not only be used to transmit image and
video streaming, but also the mesh streaming.

III. JPEG 2000-BASED MESH STREAMING

A. Overview

Fig. 2. The system hierarchy of the JPEG 2000-based mesh streaming.

The system hierarchy of our JPEG 2000-based mesh

streaming method is shown in Fig. 2. To transmit a 3D model,
we first parameterize it and encode it as a JPEG 2000 image
(Sections B and C), then the JPEG 2000 geometry image can
be transmitted through any JPIP server. To support the view-
dependent and multi-resolution schemes, we modify the
transmission sequence of an existed JPIP server (Section D).

Hence, through our modified JPIP server, the system can
perform not only the view-dependent, quality-scalable, and
multi-resolution mesh streaming, but also the view-dependent
and multi-resolution JPEG 2000 image streaming. Besides, we
also modify an existed X3D browser to make the browser can
show the JPEG 2000-based mesh streaming as showing a
normal 3D model (Section E). Furthermore, to support the 3D
animation model, as we encode a 3D model as a JPEG 2000-
based mesh streaming, we also encode a 3D animation model
as a Motion JPEG 2000-based deforming meshes streaming
(Section F), i.e., the 3D animation model is encoded as a
Motion JPEG 2000 (MJ2K) code stream [18].

B. Parameterization
Our mesh streaming method first converts a 3D model to a

geometry image [5]. A geometry image is an extension of
surface parameterization; more specifically, it uses the R, G, B
values of an image to represent the 3D model’s attributes,
such as vertex positions, normal maps, texture coordinates, etc.
The surface parameterization, on the other hand, is to find an
one-to-one mapping function 3 2F : ↔R R , such that
F(, ,) (,)i i i i ix y z u v= , where (, ,)i i ix y z means the position of the
vertices and (,)i iu v is its corresponded position in the
parameterization space, such as the pixels of an image.

Thus, while processing a model, if the 3D model is closed
manifold, we first use the cut method in [5] to find the proper
boundary of the model. Then, we use Floater’s surface
parameterization method [4] to flatten the model which has
been cut to be a surface of 2-manifold with boundary or
originally is a 2-manifold with boundary. Hence, the model is
flattened to a 2D surface and the boundary of the model is
mapped to a square. We then resample the grid points in the
image and calculate the attributes with bi-linear interpolation,
such as vertex positions, normal maps, texture coordinates, etc.
Finally, we normalize the interpolated attributes to get the
corresponding R, G, B values.

Hence, when the client side receives this JPEG 2000
encoded geometry image, the system will first decode the
JPEG 2000 image and then use the decoded image to
reconstruct the 3D model as described in Section II.B.

C. JPEG 2000 Coding
The geometry image is not the actual image that we

transmit over the Internet, due to its file size and the fact that
we have to transmit a number of images to recover all of the
attributes. JPEG 2000 compression method was employed to
address this problem, which is chosen for the reasons below:

- JPEG image is the most famous image compression

format on the Internet, and so is JPEG 2000.
- JPEG 2000 has a lossless compression mode.
- JPEG 2000 has a greater compression rate compared

to the older methods.
- JPEG 2000 supports multiple layer compression, thus

we can compress the data of all attributes into one
image.

encode decode

JPIP Server JPIP Clienttransmission

- JPEG 2000 supports progressive compression and
decompression, which allowed us to achieve
progressing transmission over the Internet.

- Arbitrary image block can be retrieved from a JPEG
2000 image, which is very suitable for view
dependent transmission.

Fig. 3. The JPEG 2000 geometry image of the Beethoven model as shown
in Section V. This JPEG 2000 image includes the vertex positions which
are encoded as the R, G, B information of the JPEG 2000 image and the
normal map which is encoded as an image and is hided as a layer of the
JPEG 2000 image

To encode the geometry image as a JPEG 2000 image or

code stream, we utilize the above features of JPEG 2000 to
store a 3D model and its all attributes. For each vertex
attribute, such as vertex position (, ,)x y z , normal vector
(, ,)x y zN N N , or texture coordinates (,)u v , each component is
represented by one image layer, i.e., there are three image
layers for representing x , y , and z components of vertex
position (, ,)x y z . Since JPEG 2000 supports multi-layer
compression, it allows us to easily compress all sets of
information into only one image. Hence, from one JPEG 2000
image as shown in Fig. 3, we can obtain all of the x , y , z
(vertex position), xN , yN , zN (normal vector), and u , v
(texture coordinate) information.

Because JPEG 2000 uses wavelet transform to compress the
image into multiple quality layers (set to 12), in the process of
transmission, we can decide the quality layer to be transmitted.
This mechanism allows us to achieve the effect of progressive
transmission and the users can obtain the multi-resolution
images. To achieve the view-dependent issue, the concept of
ROI of JPEG 2000 is adopted. The geometry image is first
divided into several blocks (with the size of 8 8×), and then
the blocks which are close to the user’s viewpoint can be
selected to transmit first. When the viewpoint changed, we
can easily recalculate the new blocks to be transmitted
according to the new viewpoint.

D. JPEG 2000 Image Transmission
To support the view-dependent and multi-resolution

schemes, we have to modify the transmission sequence of an
existed JPIP server. Although our JPIP server can support
both of the view-dependent and multi-resolution schemes at
the same time, to make the explanation clear, we first describe
the view-dependent scheme and then explain the multi-

resolution scheme (also with view-dependent) as an additional
functionality.

To describe how we request the JPEG 2000 code stream
from a JPIP server, we use the term of focus window as
described in [13]. A focus window specifies the user’s current
spatial region, the image resolution, and the image layer that
the user required. In this paper, we use W(, ,)l r c to indicate a
focus window, where ((,),(,))w w w wl x y w h= is the location
(,)w wx y and the window size (,)w ww h of the focus window, r
is the image resolution level, and c is the index of the image
layer.

In the view-dependent scheme, since the image resolution is
fixed during the entire transmission process and we assume
there is only one image layer for easy explanation, we hence
can only use W()l to indicate the focus window. To support
the view-dependent scheme (with only one layer and full
resolution image), our system is able to find the pixel (in other
words, a vertex of the 3D model) which the user is viewing,
so that the currently viewing part (focus window) can be
transmitted first. Then, the following sequence of the focus
windows are defined as shown in Fig. 5 which will be
described later.

Fig. 4. To transmit a JPEG 2000 image with the view-dependent and
multi-resolution schemes, we divide the image into several image blocks
according to their location and resolution level.

As shown in Fig. 4, we first divide an image into several

blocks. Each block size is b bw h× , where bw and bh are the
width and height of a block, and this division is applied for
every resolution level and every image layer. Hence, the focus
window of a block (,)i j is defined as , ,W ()i j i jl , where

max0...i i= max(/)bi w w= and max0...j j= max(/)bj h h= denote the
block indices along the column and row directions, w and h
are the width and height of the whole image, and

, ((,), (,))i j b b b bl i w j h w h= i i .
When the transmission starts, suppose that the pixel (the

vertex of the 3D model) which the user is viewing falls on
,Wi j , as depicted in Fig. 5 (a), then the sequence of the focus

windows is decided in a swirl fashion. Hence, as shown in Fig.

0,0W 1,0W
max ,0Wi

,Wi j

0,1W

max0,W j

"

#

%

i

j

xNx (R) y (G z (B

"

5 (a), the sequence of the focus windows starts from ,Wi j , and
the following focus windows are , 1Wi j+ , 1, 1Wi j+ + , 1,Wi j+ ,

1, 1Wi j+ − ,... , etc. After the focus windows (blocks) at the lowest
resolution level have been transmitted, the blocks at the next
resolution level will be transmitted as the same sequence.
While the user changes his/her viewpoint, the sequence will
be recomputed in the same manner to fulfill the demand of the
user. Therefore, during the transmission, the user’s viewing
part will be transmitted first and the visual quality will become
better and better while more blocks at finer resolution levels
are transmitted.

(a) (b)

(c) (d)

Fig. 5. (a) Given the image with lowest resolution, we find a block which
contains the user’s viewing pixel and decide the sequence of the following
blocks. (b) After the blocks at the lowest level have been transmitted, the
blocks at the next level will be transmitted as the same sequence. (c) & (d)
If the user changes the viewpoint, the sequence will be recomputed.

In the view-dependent and multi-resolution scheme,

similarly, we use W(,)l r to specify a focus window, since we
also assume there is only one image layer for easy explanation.
As described in the view-dependent scheme, we also divide
the image into several blocks for each resolution level. The
size of each block is the same for all resolution levels.
Moreover, the images at different resolution levels are stored
as a pyramid manner, since the pixel at lower resolution level
is generated by averaging four pixels at higher resolution level.
If the pixels in the image are used to represent the vertices of a
3D model, the pixel averaging works like the vertex grouping.
Hence, the focus window of a block (,)i j at resolution level

max0...r r= is defined as , , ,W (,)i j r i jl r , where the maximum
resolution max 2log (max(/ , /))b br w w h h= denotes the number of
resolution levels, max,0... ri i= max,(/)r r bi w w= and max,0... rj j=

max,(/)r r bj h h= are block indices along the column and row

directions, max()/ 2 r r
rw w −= and max()/ 2 r r

rh h −= denote the image
size at resolution level r , and , ((,), (,))i j b b b bl i w j h w h= i i .

If we set the image and the block as the squares, i.e., w h=

and b bw h= , the first focus window should be 0,0,0 0,0W (,0)l .
That means there is only one block at the lowest resolution
level, so it should be transmitted first. Otherwise, the first
focus window should be decided by taking the view-dependent
issue into consideration. The following focus windows are
decided in a recursive manner.

In the recursive manner, given a focus window , ,Wi j r , we
can define its four child focus windows as 2 ,2 , 1W i j r+ , 2 1,2 , 1W i j r+ + ,

2 ,2 1, 1W i j r+ + , and 2 1,2 1, 1W i j r+ + + . After the client receives the focus
window , ,Wi j r , suppose the user’s viewing pixel always falls
on the upper-left corner of , ,Wi j r , the next focus window will
be 2 ,2 , 1W i j r+ as shown in Fig. 6 (a). While the focus window
reaches the highest resolution level maxr , the other child focus
windows will be transmitted like the DFS (Depth First Search)
manner as shown in Fig. 6 (b).

(a) (b)

(c) (d)

Fig. 6. (a) The sequence of the focus windows is decided in a recursive
manner. (b) If a focus window reaches the highest resolution, the sequence
of the following focus windows is decided as the DFS manner. (c) & (d) If
the user changes the viewport, the sequence will be recomputed to fit
user’s demand.

To combine the recursive manner and the view-dependent

scheme, instead of reaching the maximum resolution level
maxr , a relative resolution threshold rε is used. Hence, after

the client receives the focus window , ,Wi j r the next focus
windows are decided as the recursive manner until the focus
window reaching the resolution level maxmax(,)r r rε+ .
Therefore, if maxr rε = , the server will work as the DFS manner;
if 1rε = , the server will work as the BFS (Breadth First
Search) manner.

If the user changes his/her viewpoint, the new viewing
information will be sent to the server and the sequence of the
focus windows is recomputed to fit the user’s demand as
shown in Fig. 6 (c) and (d). Therefore, at first, an image (3D
model) with fewer pixels (vertices) and lower visual quality
will be shown. As more code stream is received, the number

of pixels (vertices) will increase and the visual quality will
become better.

E. X3D Extension
Our new streaming method can be employed by X3D and

serves as a replacement to the node IndexedFaceSet. The
Syntax of the X3D extension is shown in Fig. 7. In the
extension node, the url field specifies the location of the
geometry image. PosMin and PosMax fields represent the
bounding box of the 3D model. Similarly, NormalMin and
NormalMax field specify the range of the normal vectors of
the 3D model. BlockSize field informs the height and
width of each image block separated by the server.

GeometryImage:X3DComposedGeometryNode {
 SFString [in,out] url [][url or urn]
 MFInt32 [in] PosMin [0 0 0] (-∞,∞)
 MFInt32 [in] PosMax [0 0 0] (-∞,∞)
 MFInt32 [in] NormalMin [0 0 0] (-∞,∞)
 MFInt32 [in] NormalMax [0 0 0] (-∞,∞)
 SFInt32 [in] BlockSize [0] [0,∞)
}

Fig. 7. The X3D extension node syntax of the 3D model encoded as a
JPEG 2000-based mesh streaming.

Fig. 8. The system hierarchy of the multimedia content transmission
through our JPEG 2000-based mesh streaming method.

Through our X3D extension, as shown in Fig. 8, a

multimedia content which contain images, videos, and 3D
scenes can be encoded as JPEG 2000 images, Motion JPEG
2000 videos, and X3D scenes. Since the 3D models and 3D
animation models in the X3D scenes are encoded as a JPEG
2000-based mesh streaming and a Motion JPEG 2000-based
deforming meshes streaming (will be described in the next
section), the 3D contents can therefore be transmitted by JPIP
server with the JPEG 2000 images and the Motion JPEG 2000
videos. Of course, if the user wants to use other codec to
encode the multimedia content, he/she can use other
multimedia server for transmission.

F. Deforming Meshes Streaming
Since a 3D model can be encoded as a JPEG 2000 code

stream, a 3D animation model which can be treated as
deforming meshes can then be encoded as a Motion JPEG
2000 code stream. Hence, to convert a 3D animation model to

be a Motion JPEG 2000 geometry video, we first convert each
frame of the animation to be one JPEG 2000 geometry image.
As described in Section B, to convert a 3D model to be a
geometry image, we have to cut and parameterize it. To
process a 3D animation model, if the 3D animation model is
closed manifold in all frames, we first use the cut method in
 [5] to find the proper boundary of the model for all frames, i.e.,
to find a uniform cut path for all frames in order to keep the
consistency. Then, we map the boundary to a square. To keep
the consistency, the vertices at the four corners of the square
should be the same in all frames. Finally, we parameterize the
3D models in all frames and guarantee the parameterization of
all frames is consistent. Hence, the 3D models in all frames
are converted to be consistent JPEG 2000 geometry images.

After converting the all frames of a 3D animation model to
several JPEG 2000 geometry images, we use intraframe
coding method similar to Motion JPEG 2000 [18]. Hence, a
3D animation model can be converted as a Motion JPEG 2000
geometry video, and also can be transmitted through the JPIP
server.

IV. TRANSMISSION ARCHITECTURE
To transmit the JPEG 2000 encoded mesh streaming or

Motion JPEG 2000 encoded deforming meshes streaming
through the Internet, we provide two kinds of transmission
architectures. One is the traditional client-server architecture
and the other is a peer-to-peer (P2P) architecture. Since our
modified JPIP server is modularized and our block-based
image transmission scheme does not need to transmit one by
one sequentially, our system can support simple client-server
architecture or a more efficient peer-to-peer architecture

A. Client-Server Architecture
Fig. 9 shows the concept of the transmission under the

client-server architecture. The further explanations are as the
following:

Fig. 9. The concept of the client-server transmission.

1. When the client requests the server for getting a certain

3D model, the initial viewing information will also send
to the server at the same time. The viewing information is
a 4 4× transformation matrix. From this matrix, we can
calculate the vertex that the user is currently viewing
according to the viewpoint and the viewing direction.

Client SideServer Side

t

1 Send a request to the server for
getting a 3D model (image). 2 Divide the geometry image of

the model into blocks.

3 Calculate the blocks’ transfer
sequence, and start to transmit
them to the client accordingly.

4 When the received data
amount reaches the threshold
(8KB), start to decode the data
and convert it to Vertex List,
then render it.5 When received a message that

indicates the viewing angle
change, go back to Step 3.

multimedia content

X3D scene J2K MJ2K video other codec

J2K
geometry
image

MJ2K
geometry
video

JPIP server other multimedia server

Interne

2. When the server receives the transmission request and the
viewing information, the server first divides the geometry
image of the 3D model into several blocks. The default
block size is 8 8× according to the block size used in
DCT (Discrete Cosine Transform) of JPEG. Hence, for
the image with resolution of 32 32× , it is divided into
4 4× blocks.

3. With the number of blocks and the viewing information,
the server can calculate which block is currently viewed
by the user and then decide the first block to be sent.

4. After deciding the first block to be sent, we have to
decide what are succeeding blocks. To transmit the blocks
as near as possible to the first block, we send the blocks
in a swirl fashion. The first one being the eye of the swirl,
the next block in line would be the one at its immediate
top, then the one next to the second in a counter-
clockwise fashion. After obtaining the sequence, we can
place the blocks into the sending buffer according to this
sequence. In the process of transmission, the server will
keep track of the block indices, so that when the
viewpoint changes, there is no need to resend the blocks
that has been sent already.

5. After the client receives the block, it can start to decode
and place the information into an array prepared
beforehand according to the block index. Squares with
incomplete vertices will be set aside first. With this, we
can decode while transmission and achieve the mesh
streaming.

6. When the viewpoint changes, the client will resend the
viewing information to the server as described in Step 1.
When the server receives the message, it will stop the
transmission of the current blocks, then proceed to Step 1
to re-compute the new transmission sequence and start to
transmit again.

B. Peer-to-Peer Architecture
Although the JPIP server provides excellent functionality

for interactive image browsing over the Internet, it cannot be
exploited in a peer-to-peer network architecture directly. As
described in the last subsection, the JPIP server should contain
the entire code stream of a JPEG 2000 image, so it can handle
all kinds of request from the client. Each node in our peer-to-
peer network framework, however, does not always have the
entire JPEG 2000 code stream. To get better performance in a
peer-to-peer network, each node should provide any
information it has already received to other neighbor nodes.
Each node should start spreading code stream as soon as it
receives any of them, rather than waiting the completion of
downloading whole code stream.

To adapt the JPIP server for a peer-to-peer network
architecture, a pre-processing is needed [7]. First, we generate
a sequence of the focus windows, which specify the location
of the image block, the image layer, and the resolution we
need. These focus windows are then passed to a modified
server program which, instead of transmitting the data pieces,
stores the corresponding data pieces onto disk. These result

data pieces are then suitable for peer-to-peer transmission.
Since the peer-to-peer transmission can not guarantee the
sequence of the transmitted blocks, the modified client
program will store the received blocks and check if the blocks
can pass to the higher level application or not. Although there
is no entire information for the transmission content, since we
encode the block numbers (,i j of the focus window) as a
pyramid manner as described in the previous section, the
block dependency can be easily checked by checking the
block indices.

V. RESULT
To show the mesh streaming result, we use a Beethoven

model as shown in Fig. 10 - Fig. 14. The original file size is
314KB in .obj file format and the file size of its 256 256×
JPEG 2000 geometry image is 105KB. Fig. 10 shows the
view-dependent result. With the locality of JPEG 2000 image,
we can see the model being rendered in more parts with our
viewing information as more data received by the client as
time goes. Fig. 11 shows the multi-resolution result. With the
multi-layer JPEG 2000 image, we can see the model being
rendered in greater details as more data received by the client
as time goes. Fig. 12 shows the result by combining the view-
dependent and multi-resolution schemes.

Fig. 10. The view-dependent result.

After integrating our JPEG 2000-based geometry image

into X3D, our method can have more extensions and
variations. Fig. 13 and Fig. 14 show the example code and the
result of combining our JPEG 2000-based geometry image
into an X3D library. In Fig. 14, the image at the left side has
additional material information; the one at the right side has
texture information. Fig. 15 shows some frames of the

animation result. The dog animation model is transmitted as a
Motion JPEG 2000 code stream.

Fig. 11. The multi-resolution result

Fig. 12. The view-dependent and multi-resolution result

Fig. 16 shows an X3D scene composes of three ball models,

two triceratops models, and one Isis model. The six models
are all encoded as a JPEG 2000-based mesh streaming. To
perform this mesh streaming, we first convert the six models
into six JPEG 2000-based geometry images. During the
transmission, since the JPIP server will divided the geometry
images into several blocks. By using the viewpoint
information, all of the blocks are reshuffled to achieve a good
view-dependent and multi-resolution result. Hence, there is
only one code stream to transmit the whole X3D scene.

<Shape>
 <Appearance>
 <Material diffuseColor=".7 0.9 0.7"
 emissiveColor="0.1 0.1 0.1"
 specularColor=".9 .9 0.9"
 shininess="1.0"/>
 <ImageTexture url="tex03.jpg"/>
 </Appearance>
 <GeometryImage url="Beethoven_256.j2c"
 PosMin="-46.49 -57.88 -24.55"
 PosMax="46.49 57.88 24.55"
 NormalMin="-0.99 -0.99 -0.85"
 NormalMax="0.99 0.98 0.99"
 BlockSize="8"/>
</Shape>

Fig. 13. The example code of the X3D extension.

Fig. 14. The X3D extension result.

Fig. 15. The animation result.

Fig. 16. An X3D scene composes of six 3D models which are transmitted
as a JPEG 2000-based mesh streaming.

VI. CONCLUSION AND FUTURE WORK
In this paper, we propose a new 3D model streaming

method which uses a JPEG 2000 image to store all
information of a 3D model. Since the 3D model is encoded as
a JPEG 2000 image, we can compress the geometry image
without data loss (lossless mode) or compress it in high

compression rate with a little bit data loss (lossy mode). With
JPEG 2000’s support for progressive compression and
decompression, we can progressively transmit and render a
3D model to reduce the user waiting time. Besides the
progressive transmission, the view-dependent issue is also
taken into consideration. Furthermore, a 3D animation model
can also be encoded as a Motion JPEG 2000 video.

Hence, by using our modified JPIP server, we can achieve
mesh streaming, deforming meshes streaming, JPEG 2000
image streaming, and Motion JPEG 2000 video streaming at
the same time with only one server. Since we divided the
JPEG 2000 image into several blocks, our JPIP server can
support not only the client-server mode, but also the peer-to-
peer transmission. Besides integrating our mesh streaming
method with the JPIP server, our method is also integrated
with X3D.

However, even the lossless mode of JPEG 2000 can
compress the data without loosing the quality; there are still
some inherent problems. To convert the 3D model to a
geometry image, we have to cut the model first to find the
boundary and this actually may cause the distortion or data
loss. Moreover, when using Floater’s method for surface
parameterization, there is a tendency to loss the information at
sharp features of a 3D model. Hence, the cut and surface
parameterization method should be enhanced to lessen the
data loss.

Most 3D models produced by range scanners are able to be
parameterized and converted into geometry image. However,
many 3D models made by artist are not easy to be
parameterized, since they are not closed manifold or 2-
manifold with boundary meshes. As a result, a new algorithm
for converting none-manifold meshes into a geometry image
or geometry images is also needed. In the network virtual
environments such as on-line games and virtual tour system,
there are many 3D models to be rendered at a time. One of our
future works is to extend our current system to a 3D scene
streaming system for more practical applications.

ACKNOWLEDGMENT
The authors would like to thank Shun-Yun Hu for his great

support on peer-to-peer architecture.

REFERENCES
[1] H. M. Briceño, P. V. Sander, L. McMillan, S. Gortler, and H. Hoppe,

“Geometry videos: a new representation for 3d animations,” in
Proceedings ACM SIGGRAPH/Eurographics 2003 Symposium on
Computer Animation, 2003, pp. 136-146.

[2] B.-Y. Chen and T. Nishita, “Multiresolution streaming mesh with shape
preserving and qos-like controlling,” in ACM Web 3D 2002 Conference
Proceedings, 2002, pp. 35-42.

[3] S. Deshpande and W. Zeng, “Scalable streaming of jpeg2000 images
using hypertext transfer protocol,” in ACM Multimedia 2001 Conference
Proceedings, 2001, pp. 372-281.

[4] M. Floater, "Parametrization and smooth approximation of surface
triangulations," Computer-Aided Geometric Design, vol. 14, no. 3, 1997,
pp. 231-250.

[5] X. Gu, S. J. Gortler, and H. Hoppe, "Geometry images," ACM
Transactions on Graphics (SIGGRAPH 2002 Conference Proceedings),
vol. 21, no. 3, 2002, pp. 355-361.

[6] H. Hoppe, “Progressive meshes,” in ACM SIGGRAPH 1996 Conference
Proceedings, 1996, pp. 99-108.

[7] S.-Y. Hu, “A case for peer-to-peer 3d streaming,” in ACM Web 3D 2006
Conference Proceedings, 2006, pp. 57-63.

[8] F.-C. Huang, B.-Y. Chen, and Y.-Y. Chuang, “Progressive deforming
meshes based on deformation oriented decimation and dynamic
connectivity updating,” in Proceedings ACM SIGGRAPH/Eurographics
2006 Symposium on Computer Animation, 2006, pp. 53-62.

[9] M. Isenburg and P. Lindstrom, “Streaming meshes,” in IEEE
Visualization 2005 Conference Proceedings, 2005, 231-238.

[10] S. Kircher and M. Garland, “Progressive multiresolution meshes for
deforming surfaces,” in Proceedings ACM SIGGRAPH/Eurographics
2005 Symposium on Computer Animation, 2005, pp. 191-200.

[11] N.-H. Lin, T.-H. Huang, and B.-Y. Chen, "3D model streaming based on
a jpeg 2000 image," in Proceedings of IEEE 2007 International
Conference on Consumer Electronics, 2007.

[12] S. Rusinkiewicz and M. Levoy, “Streaming qsplat: a viewer for
networked visualization of large, dense models,” in ACM Interactive 3D
2001 Conference Proceedings, 2001, pp. 63-69.

[13] D. Taubman and R. Prandolini, “Architecture, philosophy, and
performance of jpip: internet protocol standard for jpeg2000,” in
Proceedings of 2003 International Symposium on Visual
Communications and Image Processing, 2003, pp. 791-805.

[14] E. Teler and D. Lischinski, “Streaming of complex 3d scenes for remote
walkthroughs,” Computer Graphics Forum (Eurographics 2001
Conference Proceedings), vol. 20, no. 3, 2001, pp. 17-25.

[15] S. Yang, C.-S. Kim, and C.-C. J. Kuo, “A progressive view-dependent
technique for interactive 3-d mesh transmission,” IEEE Transactions on
Circuit and System for Video Technology, vol. 14, no. 11, 2004, pp.
1249-1264.

[16] The Virtual Reality Modeling Language -- Part 1: Functional
specification and UTF-8 encoding, ISO/IEC 14772-1:1997, Web3D
Consortium, Inc., 2003.

[17] JPEG 2000 image coding system: Core coding system, ISO/IEC 15444-
1:2004, JPEG Committee, 2004.

[18] JPEG 2000 image coding system -- Part 3: Motion JPEG 2000, ISO/IEC
15444-3:2002, JPEG Committee, 2004.

[19] JPEG 2000 image coding system: Interactivity tools, APIs and protocols,
ISO/IEC 15444-9:2005, JPEG Committee, 2005.

[20] Extensible 3D (X3D) -- Part 1: Architecture and base components,
ISO/IEC 19775-1:2004, Web3D Consortium, Inc., 2006.

Nein-Hsien Lin received the B.S. degree in Mathematics
from the National Taiwan University, Taipei, in 2004. He
is currently a M.S. student in the Graduate Institute of
Networking and Multimedia of the National Taiwan
University, since 2004. His research interests includes
Geometric Modeling and Web Graphics.

Ting-Hao Huang received the B.S. degree in Computer
Science from the National Tsing-Hua University,
Hsinchu , Taiwan, in 2002. He is currently a M.S. student
in the Department of Computer Science and Information
Engineering of the National Taiwan University, Taipei,
since 2005. His research interests include Geometric
Modeling, Mobile Graphics, and Virtual Reality.

Bing-Yu Chen (M’00) received the B.S. and M.S.
degrees in Computer Science and Information
Engineering from the National Taiwan University, Taipei,
in 1995 and 1997, respectively, and received the Ph.D.
degree in Information Science from the University of
Tokyo, Japan, in 2003. He is currently an assistant
professor in the Department of Information Management

and the Graduate Institute of Networking and Multimedia of the National
Taiwan University since 2003. His research interests are mainly for Computer
Graphics, Geometric Modeling, Web and Mobile Graphics, and Image
Processing. He is a member of IEEE, ACM, ACM SIGGRAPH, IEICE, and
Eurographics.

