
濡れた毛のリアルタイムレンダリング
Real-Time Rendering of Wet Fur

パウロシルバ† 坂東洋介†‡ 陳炳宇§ 西田友是‡
Paulo SILVA†, Yosuke BANDO†‡, Bing-Yu CHEN§ and Tomoyuki NISHITA†

† 東京大学 † The University of Tokyo

‡ 東芝 ‡ Toshiba Corporation

§ 国立台湾大学 § National Taiwan University

E-mail: †{paulo,ybando,nis}@is.s.u-tokyo.ac.jp, §robin@ntu.edu.tw

1 Introduction

Fur is present in most mammals which are common char-
acters in both movies and video-games, and it is impor-
tant to model and render fur both realistically and fast.
In computer graphics, there are mainly two approaches
to fur rendering. Using primitives such as lines or curves,
and using textures containing sampled fur geometry. The
former case is oriented towards realism and the latter case
focusing on real-time rendering performance.

However, the existing research focused on real-time
rendering leaves out important factors such as the clump-
ing effects visible when fur becomes wet or dries up.

In this paper we describe a method to simulate effects
visible in water-fur interaction such as the change in color
and shape of the fur (see Fig. 1 and Fig. 2).

2 Related Work

Fur rendering using textures was first presented by Ka-
jiya and Kay [1]. Lengyel et al. [2] presented a real-
time method using texture layers based on the work by
Neyret [3]. Recently several authors improved this method
in both performance [4, 5] and rendering effects like shad-
ows [6] or weathering fur [7]. A method for rendering wet
fur clumps was proposed by Bruderlin [8]. This is a prim-
itive based method which concentrates primarily on the
shape the fur takes when wet.

However, none of the existing methods produces wet-
like fur effects such as clumping in real-time.

3 Wet Fur Effects

In our method, the fur representation is based on Lengyel
et al.’s [2] work. Our fur clumping method conceptually
resembles Bruderlin’s [8] work, but is oriented towards a
GPU implementation for real-time rendering. We adapt
the work by Goldman [9] to compute the fur color while
using a texture based representation for the fur.

Our method uses as input a mesh and a texture rep-
resenting the fur color. We create a wetness mask texture
(Fig. 3), which contains the clump regions information.
Here we assume a parameterization from the model to
the texture is available. In the wetness mask we store
the center of the clump ~c, its radius r, and its wetness or
clump-percent ρ (see Sec. 3.1).

(a) (b)

Figure 1: Example of real-time fur visuals possible with
our method. (a) an initially dry Stanford Bunny, (b) and
the same model soaking wet. Notice the differences in fur
clumping shape and color. The top-left square represents
the wetness texture used by our method to control the
fur shape.

(a) (b)

Figure 2: Comparison between: (a) real clumping of a
wet blanket and (b) the result produced by our method.

During rendering, in the fragment shader we apply a
fur clumping process as described in Sec. 3.2 followed by
the color computation as described in Sec. 4.

3.1 Clump Mask Generation

The wetness mask (Fig. 3 (a)) is used to specify wet re-
gions. For a clump located at surface parameter ~c = (u, v)
with radius r, and a clump-percent ρ ∈ [0, 1], the center
position on the model is computed from the parameter-
ization, and written to the wetness mask in the texture
channels (R, G). Additionally we write (r, ρ) to texture
channels (B, A).

A droplet is blended into the wetness mask texture
using Algorithm 1.

Figure 3: Using the mesh parameterization and a wetness
mask, we compute the displacement ~d. The black area
in the wetness mask represents dry fur. The colored area
represents the wet area. In the clump section view we can
see: ~d is the displacement vector, ~p is the current position
in the wetness mask, ~c is the center of the clump, h is the
height of the current texture layer, r is the radius of the
clump, ρ is the clumping percentage, ρr is the distance
from the center of the clump ~c outwards.

3.2 Fur Clumps Deformation

To deform the fur in order to create clumps, we compute
a displacement ~d in the fragment shader for each visible
position on the input mesh. Then we displace the texture
coordinates of that position if the region is wet. To check
whether the region is wet or not, we inspect the wet-
ness mask (Fig. 3) using the model parametrization. The

displacement ~d is illustrated schematically in the clump
cross-section view in Fig. 3. There are many possibili-
ties for displacement function as the one presented in [8].

Here we compute the displacement ~d using Eq. 1 bacause
we believe this produces an interesting result, but any
other function would also be possible.

~d(h) = ((1− w)h + w(1 + k−1 lnh))ρr(~p − ~c), (1)

where h ∈ [∆h, 1] is the normalized fur length, ∆h = 1/N
where N is the number of layers, ρ is the wetness, r is
the clump radius, ~p is the current pixel position on the
wetness mask, and ~c is the center of the clump. Notice
that h does not take the value 0 because that value is con-
sidered to be the base surface which is rendered directly
bypassing the algorithm. The factor w is a constant that
controls how the fur shape bends towards the clump cen-
ter. Finally k = − ln ∆h is a normalization of the lnh.

Algorithm 1 Blend Droplet Into Wetness Mask

if ‖~cmask − ~cdrop‖ ≤ rdrop then

if ρmask 6= 0 then

ρtotal = clamp(ρmask + ρdrop, 0, 1)
if ρtotal 6= 0 then

α = ρdrop/ρtotal

~cmask = (1− α)~cmask + α~cdrop

rmask = (1 − α)rmask + αrdrop

end if

ρmask = ρtotal

end if

else

~cmask = ~cdrop

ρmask = ρdrop

rmask = rdrop

end if

(a)

(c)

(b)

(d)

Figure 4: Fur with w = 0 (a,b) and w = 1 (c,d).

Since h takes values between ∆h and 1, the | ln ∆h| is the
largest value that function takes, and therefore is used
in the normalization. Since the values of k−1 lnh are
∈ [−1, 0] we add 1 to move the interval to [0, 1]. This
blending between linear and logarithmic factors produces
the shapes illustrated in Fig. 4 (a,b) and (c,d). In Fig. 4
(a,b) the fur maintains a straight shape while leaning to-
wards the clump center, while in Fig. 4 (c,d) the fur shape
bends in towards the center of the clump along its length.
If an area is not in a clump region, we do not displace any
texture coordinates, and directly render the fur using the
original texture coordinates. This idea is stated in Al-
gorithm 2, where ~uvcolor and ~uvgeo are the corresponding
color and fur texture coordinates. Note that although the
fur texture has three coordinates (u, v, h), only two (u, v)
are displaced.

Applying the wetness mask in Fig. 5 (b) to Fig. 5 (a),
the desired clumping effect is achieved as shown in Fig. 5
(c).

(a)

(b) (c)

Figure 5: (a) Input fur texture. (b) Wetness mask with
wet areas displayed in blue. (c) The result of applying to
input fur texture (a) the method presented in Sec. 3.2,
using the wetness texture (b).

4 Rendering

In the fragment shader, we select the corresponding tex-
ture fragment from the fur texture layers (3D texture)
using the interpolated surface texture coordinates (u, v)

displaced by ~d(hi) (see Eq. 1) and third texture coor-
dinate hi, which is the current normalized fur length
hi = (1 + ni)/N , where ni ∈ [0, N − 1] is the current
layer. For non-transparent fragments, we use an illumi-
nation model adapted from [9]. For a given specular color
Ks and with the color Kcolor extracted from the input
color texture, we compute the final fragment color Cfrag

as:

Cd = Kcolor max(0,~l · ~n),

Cs = KsIs,

Cfrag = γoccγwet(Cd + Cs).

(2)

where ~l, ~n are the light direction and normal vector. Here
we use the surface normal and not the fur normal since
the objective is to shade the surface accordingly to its
shape, but the fur normal is used to compute the specular
contribution indirectly through the use of the fur tangent.
For the specular contribution Is we use the method by [9]
with added water contribution for attenuation as stated
in Eq. 3.

Is(~tws,~l, ~e, ρ, p) = [(~tws ·~l)(~tws · ~e)+

sin(~tws,~l) sin(~tws, ~e)]
kspec(ρ)p,

kspec(ρ) = 1 + σspec(ρ− 1).

(3)

Where ~tws is the fur tangent in world space coordinates
as given by Eq. 4, ~l is the light direction, ~e is the eye
direction, ρ is the water percentage as previously stated,
and p is the specular exponent. The constant σspec is user
given and controls how much the wetness ρ contributes
to the specular exponent.

~∆d(hi) = ~d(hi)− ~d(hi−1),

∆h = 1/N,

~tts = (∆dx, ∆dy, ∆h),

Qws = [~t ~b ~n],

~tws = Qws
~tts/‖~tts‖.

(4)

The term ~tts represents the vector tangent to the fur
strand in texture space, Qws is the base change matrix,
and ~t, ~b form the surface tangent space while ~n is the sur-
face normal. We add a simple occlusion and darkening
due to the wetness by introducing into Eq. 2 the factors:

γocc = 1 + σocc(hi − 1),

γwet = 1− σwetρ.
(5)

The value σocc ∈ [0, 1] and σwet ∈ [0, 1] are constants
given by the user, which control the percentage of hair
darkening due to occlusion and wetness respectively. Al-
though methods such as [10, 11, 12] can possibly provide
better results, for short fur this simple method is effective
and inexpensive.

Algorithm 2 Fur Clumping

if ρmask 6= 0 then

compute ~d
if ‖~cpixel − ~cmask‖ > rmask then

ignore pixel from a different clump
end if

if ρmask = 0 at ~cpixel + ~d then

ignore pixel from a dry area
end if

~uvcolor ← ~uvcolor + ~d
~uvgeo ← ~uvgeo + ~d
if no geometry at ~uvgeo then

ignore transparent pixel
end if

compute color using ~uvcolor

end if

5 Results

We conducted performance tests on a Intel Quad CoreTM

3GHz, with 2GB of RAM, and with a GeForce 8800

GTS with 320MB video memory. The resolution of the
wetness mask and fur texture layers is 256 × 256. The
frame-rates obtained are summarized in Table. 1. Our
results indicate that as the model size (number of trian-
gles) increases, the resolution of the screen influences less
the frame-rate. However we still obtain real-time perfor-
mance for most of the cases. In Fig. 6 we can see some
examples of our method applied to some input models.

6 Conclusion and Future Work

We presented a method to add wet-like fur effects to tex-
ture based fur representations. Our method introduces

(a) (b) (c)

Figure 6: (a) a Stanford bunny partially covered with wet clumped fur and partially with dry fur. (b) a detailed view
of the area between the wet and dry fur. Notice the differences in color, and shape. (c) the fur clumps form the letters
“VCS 10“.

Table 1: Performance values by our method in our tests.
Even for large meshes we obtain real time performance.
The “layers“ field indicates how many times the model is
redrawn to produce the fur effect as explained in [2].

16 Layers
Model #Triangles 800× 600 1680× 1050
Hippo 44.452 154 80
Cow 92.689 78 63

Bunny 142.307 24 22
64 Layers

Hippo 44.452 51 24
Cow 92.689 28 21

Bunny 142.307 8 8

a texture to represent fur clumping information, such as
clump position, radius, and amount of water stored at a
particular point on an input surface. With this we can
render interactively effects such as hair clumping due to
water accumulation.

When fur becomes overly wet the clumps disappear,
and the fur forms a smooth surface with high specular
reflection. In our current method we do not support this
transition, which is therefore left for future work. We
think that an interesting extension would be to add sup-
port to high detail contact interactions with the fur tex-
ture. That is, to support real-time deformation of fur as
a result of a contact with complex shapes, such as hands,
etc.

References

[1] J. T. Kajiya and T. L. Kay, “Rendering fur with
three dimensional textures,” in ACM SIGGRAPH

1989 Conference Proceedings, pp. 271–280, 1989.

[2] J. Lengyel, E. Praun, A. Finkelstein, and H. Hoppe,
“Real-time fur over arbitrary surfaces,” in Proceed-

ings of the 2001 Simposium of Interactive 3D Graph-

ics, pp. 227–232, 2001.

[3] F. Neyret, “Modeling and animating, and render-
ing complex scenes using volumetric textures,” IEEE

Transactions on Visualization and Computer Graph-

ics, vol. 4, no. 1, pp. 55–70, 1998.

[4] J. Isidoro and J. L. Mitchell, “User customizable
real-time fur,” in ACM SIGGRAPH Conference Ab-

stracts and Applications, p. 273, 2002.

[5] S. Tariq and L. Bavoil, “Real time hair simulation
and rendering on the gpu,” in ACM SIGGRAPH

2008 Talks, p. Article No. 37, 2008.

[6] B. Sheng, H. Sun, G. Yang, and E. Wu, “Furstyling
on angle-split shell textures,” Computer Animation

and Virtual Worlds, vol. 20, no. 2-3, pp. 205–213,
2009.

[7] S. Jiao and E. Wu, “Simulation of weathering fur,”
in Proceedings of the 2009 International Conference

on Virtual Reality Continuum and its Applications

in Industry, pp. 35–40, 2009.

[8] A. Bruderlin, “A method to generate wet and
broken-up animal fur,” The Journal of Visualization

and Computer Animation, vol. 11, no. 5, pp. 249–
259, 2000.

[9] D. B. Goldman, “Fake fur rendering,” in ACM SIG-

GRAPH 1997 Conference Proceedings, pp. 127–134,
1997.

[10] T. Lokovic and E. Veach, “Deep shadow maps,”
in ACM SIGGRAPH 2000 Conference Proceedings,
pp. 385–392, 2000.

[11] G. Yang, H. Sun, E. Wu, and L. Wang, “Interactive
fur shaping and rendering using nonuniform-layered
textures,” IEEE Computer Graphics and Applica-

tions, vol. 28, no. 4, pp. 85–93, 2008.

[12] R. Gupta and N. Magnenat-Thalmann, “Interactive
rendering of optical effects in wet hair,” in Proceed-

ings of the 2007 ACM Symposium on Virtual Reality

Software and Technology, pp. 133–140, 2007.

