
Multiresolution Streaming Mesh with
Shape Preserving and QoS-like Controlling

Bing-Yu Chen
robin@is.s.u-tokyo.ac.jp

Tomoyuki Nishita
nis@is.s.u-tokyo.ac.jp

Department of Information Science, University of Tokyo
7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan

ABSTRACT
How to transmit 3D meshes efficiently has become an important
topic on Web3D platform, since there are more and more people
need to use 3D models on the Internet. The data size of a
geometric 3D model is usually large for being able to represent
more details of the model, although we do not need to use such a
detail model in most cases. Hence, to offer 3D model which shape
and features could still be recognized easily with less data size is
necessary. Additionally, the network bandwidth of the Internet is
not stable actually, how much data is suitable for Internet is also a
question. Therefore, we propose a new multiresolution streaming
mesh for Internet transmission with QoS-like (Quality of Service)
controlling in this paper.

While transmitting the streaming mesh with our system, the server
first delivers a simplified mesh model with the data size according
to the current network bandwidth. If the user at the client side
needs to use a more detail model, the server then sends some
necessary patches to the client, so that the client program could
show the detail model progressively. Our approach is different
from previous works, for Web3D utilization, the size of the patch
data which is used for reconstructing the original 3D model is less,
and the shape and features of the simplified model could still be
recognized easily. Moreover, our method needs no complex
computations, to generate this streaming mesh on demand is
possible. With the QoS-like controlling, the transmission rate
between the server and the client has been controlled automatically
and the users could get the 3D models with proper qualities as
their network situations.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems – Client/server; I.3.2 [Computer Graphics]: Graphics
Systems – Distributed/network graphics; I.3.5 [Computer
Graphics]: Computational Geometry and Object Modeling –
Curve, surface, solid, and object representations .

Keywords
Streaming M esh, M esh Simplification, Level of Detail, Geometric

Quality of Service.

1. INTRODUCTION
Recently, more and more users on the Internet want to have the
supports from 3D graphics, since the machine performance and
network bandwidth are getting better than before. In the Internet
Graphics field, the utilization of geometric 3D models is much
usual, so that how to transmit 3D mesh data through the Internet
efficiently has become an important topic on Web3D platform,
since the data size of a 3D model is usually large. If a user wants
to download a 3D model through the Internet, he or she must pay
much time to wait for getting the whole data, even if the model is
not really he or she wants after a long time waiting. Moreover, the
users on the Internet usually do not need to use such a detail
model in most cases, sometimes they just download the model to
check if it is what they need. Hence, to offer a simplified mesh
model which shape and features could still be recognized easily is
necessary. Moreover, since the network bandwidth of the Internet
is not stable actually, how much data is suitable to represent a 3D
model for Internet uses is also a question.

Therefore, we develop a new multiresolution streaming mesh for
Internet transmission with QoS-like controlling in this paper.
When a user needs to use a 3D model encoded with the streaming
mesh format on the Internet the server first delivers a simplified
mesh model which shape and features could still be recognized
easily to the user with the data size according to the QoS-like
controlling. QoS [3] is a protocol of computer network
technologies, which provides the mechanics to differentiate traffic,
so that users can get different quality of video or audio due to
different bandwidth of the network environment with the same
continuity. In this paper, we use the same concepts to provide the
3D models with different resolutions to the users at the client side,
and the users will pay the same waiting time to get the models
with different resolutions. Since this is not the definition of the
original QoS, we call this approach as “QoS-like” in this paper.

Then, if the user needs to use the model with more details, the
server will then transmit some necessary patches to the client also
with the QoS-like controlling, so that the client program could
show the detail model progressively, and the user also gets
different progressive patches due to the current network
bandwidth. Finally, if the user really needs the original model,
after receiving all the patches, the system then reconstructs the
original 3D model with no loss and no retransmission. The patch
here means the packaged information which is used to reconstruct
the original model.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, or republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or a
fee.
Web3D’02, February 24-26, 2002, Tempe, Arizona, USA.
Copyright 2002 ACM 1-58113-468-1/02/0002…$5.00.

There are three processes to construct the streaming mesh. The
first process is the 3D mesh simplification, the second one is the
storage methodology for the simplified mesh and the patches
which will be used to reconstruct the original model, and the last
one is to transmit the streaming mesh with QoS-like controlling
and reconstruct the original 3D model. The mesh simplification
algorithm of our streaming mesh is first categorizing all vertices
into n levels, and finding the connective relationships between
the vertices of each level. By using several half edge collapse
operations, which will be described in Section 4.2, the original 3D
model is processed to be a simplified 3D model. Furthermore, the
vertices of the simplified model are the subset of the vertices of
the original model, i.e. the vertex positions are the same, and the
connective relationships between the vertices are also the same.
Hence, the data size of the patches used to reconstruct the original
model is less.

Moreover, to use a simple 3D model is more usual than to use a
huge model, so we preserve the shape of the 3D model during the
3D mesh simplification process. Furthermore, since our approach
does not need any complex computation, to generate the streaming
mesh on the fly is possible. With the QoS-like controlling, the
transmission rate between the server and the client has been
controlled automatically and the users could get the 3D models
with proper qualities as their network bandwidth.

Observing the development of the Internet, we believe that “pay-
per-use” software will be realized in the near future. Under this
new paradigm, we may need to distribute applications from
servers to clients on different platforms. Therefore, we decided to
develop all the algorithms of the streaming mesh by using pure
Java [1] programming language for its hardware-neutral features,
and wide availability on many hardware platforms, even for
embedded systems, such as mobile phones or PDAs (personal
data assistant). Moreover, the 3D graphics rendering is done by
jGL [4] which is a 3D graphics library for Java with OpenGL-like
API (application-programming interface) and also developed by us.

2. RELATED RESEARCHES
There are several researches about transmitting 3D models on the
Internet. Some of them are transmitting the compressed 3D model
which provides fine shape with few data size. Others are
transmitting the simplified 3D model first, and then using the
transmitted simplified model to reconstruct the lossless original
3D model progressively. Our approach is the latter one and also
needs a 3D mesh simplification process. There are several kinds of
3D mesh simplification methods [10], but not all of them are
satisfied to reconstruct the original 3D model. In this section, we
would like to introduce some suitable ones.

PM (Progressive Meshes) is the most famous method for 3D
mesh simplification based on edge collapse or edge contraction
operation. This algorithm is provided by Sander at el. [20], Hoppe
[13] [14] [15] and Hoppe at el. [16]. Simply speaking, this 3D
mesh simplification method is to find the minimum value of an
energy function which includes the vertex positions, vertex
connectivity, normal vectors, and texture mapping coordinates. A
derived method, QEM (Quadric Error Metrics), has been provided
by Hoppe [12], Garland at el. [8] [9] and Ronfard at el. [19], to
make the calculation faster by calculating the error quadrics of new
vertices.

The main process of PM is the edge collapse operation, and the
energy function is minimized by using a nested optimization
method. The outer loop is used for optimizing over the topology
of the 3D mesh, and the inner loop is used for optimizing over the
vertex positions. Hence, the vertex connectivity of the simplified
model is the same with that of the original model, but the vertex
positions will maybe be changed.

Another famous algorithm is based on the vertex decimation
operation, which is provided by Alliez at el. [2], Lee at el. [18],
Turk [23] and Schroeder at el. [22]. This algorithm is different
from the PM method; there is no any energy function which
maybe needs complex computations. But, the shape of the
simplified 3D model will maybe be changed and hardly recognized.

The main processes of these vertex decimation algorithms are
finding the removable vertices, and using the vertex removal
operations to remove all the removable vertices which are
independent with each other. Two vertices are called independent
if they are not adjacent. Finally, re-triangulating the remaining
holes left by removing the vertices. Hence, the vertices of the
simplified model are the subset of vertices of the original model, i.e.
the vertex positions are the same, but the vertex connectivity will
maybe be changed.

3. NOTATION
A geometric 3D model is usually represented as triangular meshes1.
Each triangular mesh is associated by three vertices. Like other 3D
model representations, a geometric 3D model M could be
represented as the formulas in Figure 1. In the formulas, V is the
set of vertex positions iv , []mi ,1∈ , where m is the number of
vertices, defining the shape of the triangular meshes. F means the
vertex connectivity of the 3D model. D is the set of discrete
attributes fd , like the materials, associated with the faces f , and
S is the set of scalar attributes ()fvi

s , , like the normal vectors,
associated with the wedges ()fvw i ,= . Hence, the geometry of
the 3D meshes could be represented as the image ()FVφ , where

3: ℜ→ℜm
Vφ is a linear mapping.

()SDFVM ,,,=

{ } 3
1, ℜ∈= = i

m
ii vvV

{ }{ }VvvvlkjfF lkj ∈== ,,|,, , mF ℜ⊂

{ }FfdD f ∈= |

(){ }fisS fvi
∈= |,

Figure 1: The representation of a geometric 3D mesh.

An edge { }kje ,= is called a boundary edge if there is only one
face { }lkjf ,,= with fe ⊂ . An edge { }kj, is called a sharp
edge2 if either (1) it is a boundary edge, (2) its two adjacent faces

lf and rf have different discrete attributes, i.e.
rl ff dd ≠ , or (3)

its adjacent wedges have different scalar attributes, i.e.
() ()rjlj fvfv ss ,, ≠ or () ()rklk fvfv ss ,, ≠ . If an edge { }kj , is a sharp edge,

1 We convert all non-triangular meshes into triangular ones before

doing the 3D mesh simplification process in this paper.
2 The “sharp” edge here is not only used to indicate the sharp of

the geometric differences, but also for the edges which adjacent
faces contain different materials.

the two endpoints of the edge { }j and { }k will be called corner
vertices3. Figure 2 is the examples for showing the (a) sharp edges
and (b) corner vertices.

(a) (b)

Figure 2: The examples of (a) sharp edges and (b) corner
vertices.

An edge { }kj, is called a base edge of level i , []ni ,1∈ , where n
denotes the number of levels from the original model to the
simplified model, if its adjacent wedges have the same scalar
attributes, i.e. () ()rjlj fvfv ss ,, = and () ()rklk fvfv ss ,, = , and the weight
of this edge is bigger than the threshold iε of level i , where the
difference of the two endpoints’ scalar attributes is called the
weight of the edge. Figures 9 (a) ~ (d) show the examples of the
base edges in different levels. The vertices set iV , which contains
all endpoints of the base edges of level i , corner vertices, and
some necessary points used to connect all the above vertices are
called base vertices of level i . Therefore, mesh iM is called a
simplified mesh of level i if it is associated from the vertices of
the set iV , where { }n

iiV
1= , 1+⊂ ii VV , VVn = .

Moreover, if the difference between the vertex number of V and
1V is n′ , there are n′ steps from the original mesh to simplified

mesh, and each step needs one half edge collapse operation. On
the other hand, when reconstructing from the simplified mesh to
the original mesh, n′ times of the vertex split operations are
needed. Notice that the number of levels n and the number of
steps n′ are different. If the steps operated in one level i is ′

ii ,
then the summation is ni

n

i
i

′=′∑
=1

.

4. MESH SIMPLIFICATION
The first process of 3D mesh simplification is finding the sharp
edges. Then, using the threshold 1−nε to find the base edges of
level 1−n . The endpoints of the sharp edges and base edges are
specified as the un-removable vertices . Otherwise, the other
vertices and the edges used to connect them are removable. By
removing the removable vertices and edges after some necessary
tests, the first simplified mesh of level 1−n is done.

Next, use the same threshold to search the base edges again. If
there are still some removable vertices and edges, removing these
vertices and edges as above to get the next simplified mesh of the
same level. Repeat the loop until there is no removable vertex and
edge; the final simplified mesh of level 1−n is got. Then, use this
simplified mesh to generate the simplified mesh of the next level
by using the same loop as above. Once we got to the level 1 , the
procedure of 3D mesh simplification is completed.

3 The set of the corner vertices CV is a subset of the set of all the

vertices V (i.e. VVC ⊆).

Additionally, the number of levels, which is the ending condition,
could be set according to simplified level of the 3D model. If there
is no such ending condition, the simplification process will be
stopped when there is no removable vertex and edge.

4.1 Removable Vertex Selection
To find the removable vertices and edges, we find the sharp edges
and base edges of current level first, and mark all the endpoints of
the sharp edges and base edges as the un-removable vertices, and
mark the sharp edges and base edges as the un-removable edges
also. As shown in Figure 3, if there are more than one removable
edges linked with the removable vertex located in the center, to
test which edge removed is better is necessary. For this reason, we
use a priority queue and put removable edges with its weight as its
priority into it, which has been described in Section 3 and has been
calculated during finding the base edges. Therefore, the edge with
smaller weight will be removed earlier.

Figure 3: When removing the vertex located in the center,

one of its adjacent edges will also be removed.
Here we choose the edge with a lower weight. In
this case, we will choose the upper arrow.

Figure 4: After collapsing the half edge st vv , i.e. combining

the vertex sv with vertex tv , the vertex sv is
removed, and the triangle rso vvv∆ has been
deformed to be rto vvv∆ , which is the reverse
triangle of triangle tro vvv∆ . Then, the flipping
error is occurred.

Then, get one removable edge from the priority queue and try to
combine one endpoint of the edge to the other. If there will be a
flipping error as shown in Figure 4 after deforming some faces due
to the half edge collapse operation, this operation will be given up.

half edge collapse

tv

sv

rv
ov

tv

rv
ov

? ?

?
?

?

If the removable edge has been passed all tests, the half edge
collapse will be operated as the following section.

4.2 Half Edge Collapse
The “half edge collapse” operation is a special case of the “edge
collapse” operation, and if a vertex removed with particular re-
triangulation of the remaining hole, the resulting mesh is also the
same as the one after doing the “half edge collapse” operation. If
we wish to get a simplified mesh with good compressing rate, the
number of patches must be large. Therefore, we use the “half edge
collapse” operation in this paper for minimizing the data size of
each patch which effects the network transmission significantly

Before doing the half edge collapse operation, it is necessary to
store the information of the removing vertex for reconstructing the
original model. Then, collapse the edge, remove the vertex, and
deform the faces associated with the removed vertex as shown in
Figure 5. In this figure, the triangles located in the bottom of the
removed vertex sv is deformed after collapsing the half edge st vv ,
i.e. combining the vert ex sv with vertex tv , and the vertex sv , face

sat vvv∆ , and face tst vvv∆ are removed.

(a) (b)

Figure 5: The examples of (a) half edge collapse and (b)
vertex split operations.

Figure 6: When removing the edge located in the center, one

of its endpoints will be removed also. Here we
removed the one due to the deviation of its adjacent
faces’ normal vectors.

The information used for reconstructing the original model is
stored as a patch. To minimize the data size of the patch which

will be sent to the client side to reconstruct the original model, we
use half edge collapse instead of using normal edge collapse. Hence,
when removing one edge, to test which endpoint is better one to
be removed is necessary as shown in Figure 6. Therefore, the
policy which we used here is if either (1) vertex tv is an un-
removable vertex, or (2) the deviation of adjacent faces’ normal
vectors of vertex tv is greater than that of vertex sv , the vertex sv
is removed.

5. MESH RECONSTRUCTION
The simplified mesh and the patches which have been stored when
doing the 3D mesh simplification process are the components of
the streaming mesh. When using the streaming mesh on the
Internet, the simplified mesh is sent first. After sending the
simplified mesh, the patches is sent progressively with QoS-like
controlling; then the original 3D model could be reconstructed
without data lost by using the vertex slip operation.

5.1 Vertex Split
If there are n ′ steps for reconstructing the original mesh from the
simplified mesh, n′ patches are needed. Each of the patches
contains the geometric position and attributes of one removed
vertex in the simplification process and other necessary
information which will be explained in this section. As described
in Section 4.2, when doing the 3D mesh simplification from the
mesh of step 1+′i to the mesh of step i ′ , the half edge collapse
operation has been used. When doing the mesh reconstruction
process from the mesh of step i′ to the mesh of step 1+′i , we
use the vertex split operation on the other hand.

Besides the position and attributes of the vertex which will be
added into the model, the other necessary information for the
vertex split operation is used for finding the vertex which will be
split. As shown in Figure 7, the vertex tv is such a vertex which
will be split, and the triangles bellowed the edge

tavv and edge
dt vv will be deformed. Hence, each patch also contains the

triangle index of lf , the vertex index of vertex tv in face lf , and
the number of triangles from the face lf to face rf . Therefore,
we can use the triangle index of lf and the vertex index to find out
the vertex tv , which will be split, and use the neighborhood
information to find out all the triangles from face lf to face rf ,
which will be deformed after the vertex split operation.

Figure 7: Using the transmitted patch, the vertex which will

be split is found. Moreover, the triangles which will
be deformed due to the vertex split operation will
also be decided by using the same patch.

When the mesh of step i′ becomes the mesh of step 1+′i , we
first find out the vertex which will be split by using the
transmitted patch. As shown in Figure 5, we use the information
contained in the transmitted patch to find the vertex av , vertex dv ,

?
?

tv

sv
av

bv
cv

dv

tv

av

bv
cv

dv

half edge

collapse

vertex split

tv

av
dv

lf rf

patc

and vertex tv , then add a new vertex sv and edge
ts vv to the

meshes, finally deform the triangles located in the bottom of edge
savv and edge ds vv .

5.2 QoS-like Controlling
Although we have decoded a geometric 3D model into a streaming
mesh which contains one simplified mesh and several patches. To
transmit the streaming mesh through the Internet efficiently is still
a problem, since the real network bandwidth between the server
and the client is unknown and unstable. If the server delivers all
the patches in the same time, the users at the client side must still
wait for downloading them. On the other hand, if the server sends
only one patch at one time, the overhead of the network package’s

header and the synchronization between the server and the client
will make the transmission rate worse [7] as shown in Table 3.
Hence, to make a flow control for monitoring the patches’
transmissions is necessary. In our experiment, we use HTTP
(Hypertext Transfer Protocol) as the transmission protocol, since
it could pass trough almost all the firewall limitation, although the
synchronization between the server and the client costs a lot of
time when making the connection.

A useful and interesting concept of QoS is to provide different
quality of medias over the flexible network bandwidth. Here, we
use the same concept to provide the 3D models with different
resolutions to the users at the client side, and the users will pay
the same waiting time to get different progressive models.

Figure 8: System hierarchy and network communication diagram.

The system hierarchy and the network communication diagram are
shown in Figure 8. When the 3D model provider creates a model
encoded with streaming mesh method which contains a simplified
mesh and several patches, all he or she has to do is to upload it
onto the web server and the users will use it via the inline applet
by a web browser. The web browser first sends a HTTP request
to the web server to download the Java applet which is the tool to
display the streaming mesh. After the applet is running on the
client machine, the applet will then send a HTTP request to the
web server for downloading the simplified mesh which is the first
part of the streaming mesh, and calculate the effective bandwidth
between the server and the client by using the downloaded file size
and the transmission time. Then, the applet will make a HTTP
connection again with a Java servlet on the web server, and
download the proper number of patches according to the

calculated network bandwidth, and the bandwidth will be
recalculated again by using the downloading file size, transmission
time, and the previous network bandwidth. Hence, the client
applet could show the 3D model with proper data size due to the
current network bandwidth.

Then, if the user needs to use the model with more details, the
client applet will send a HTTP request again to the server, and the
server servlet will transmit the patches to the client also according
to the calculated network bandwidth, so that the client applet
could show the detail model progressively and recalculate the
network bandwidth again. Finally, if the user really needs the
original model, after the server servlet will send all the rest patches
to the client, and then the client applet could reconstructs the
original 3D model with no loss and no retransmission.

3D model
provider

user

upload to
 server

HTTP request for
Java applet

Java applet

HTTP request for
simplified mesh
simplified mesh

HTTP request
for patches
patches

streaming mesh

simplified mesh

patch

web browser

Java applet

HTML
context

browse web page

show 3D model

web server

Java servlet

HTTP
response

HTTP request
for rest patches

rest patches
show original

3D model

Additionally, t he Java servlet is coded by using Sun Java™ 2 SDK,
Enterprise Edition v1.2.1.

6. RESULTS
Figure 9 shows the base edges and simplified models from the
level of the original model to the final level of the simplified model
of a 3D model “bunny” in different levels. Figure 10 shows the
comparisons of the original and simplified models of other 3D
models, even for the simplified 3D model, the shape and features
could still be recognized easily. Table 1 lists the face number and

vertex number of the original and simplified models and also the
performance to generate the simplified models, which includes the
time for simplifying the original model and compressing the
resulting ASCII file, for different 3D models. The testing platform
is a notebook PC with Intel Mobile Pentium III 850MHz CPU
and 256MB memory, the Java environment is Sun Java™ 2 SDK,
Standard Edition v1.3.1. Since we wish to generate the simplified
model which shape and features could still be recognized easily,
the compress rate of the model with several features is worse than
other models, like the 3D model “hand”.

(a) (b) (c) (d)

(e) (f) (g) (h)

Level 17: f = 2915 Level 13: f = 1145 Level 9: f = 669 Level 1: f = 531
Figure 9: The (a) ~ (d) base edges and (e) ~ (h) simplified modes of 3D model “bunny” of different levels.

(dragon) (hand)

(a) (b) (a) (b)

(cessna – with different materials) (fandisk – with sharp edges)

(a) (b) (a) (b)
Figure 10: The examples of (a) original 3D model and (b) simplified results.

Table 1: Comparisons of original and simplified models.

original model simplified model model
#faces #vertices #faces #vertices

time
(ms)

bunny 2,915 1,494 531 302 681
dragon 2,730 1,257 1,704 744 540
hand 2,130 1,055 1,852 916 370

cessna 13,546 6,795 5,720 2,882 5,040
fandisk 12,946 6,475 1,518 761 6,477

Table 2: Comparisons of real file sizes.

model original model
(bytes)

simplified model
(bytes)

one patch
(bytes)

bunny 73,238 13,984 33.451
dragon 63,811 37,328 34.058
hand 50,715 42,960 33.856

cessna 528,002 183,435 25.653
fandisk 280,979 63,345 25.089

Table 2 shows the real file sizes of the original model and the
streaming mesh, which contains a simplified model and several
patches, of different 3D models. For comparisons, we have
converted the file format of the original model to be the same as the
simplified mesh (a compressed ASCII file). The number of patches
for reconstructing the original model from the simplified one is the
difference of the vertex number of the original model and the
simplified one as shown in Table 1. All of the patches are also
stored as a compressed ASCII file; the listed file size is the average
size of one patch. Furthermore, since we used only pure Java
programming language to develop all the algorithms, it is possible
to use our testing program on the web 4. Moreover, the 3D
graphics engine jGL5 is be used which is also developed by pure
Java.

Table 3: Comparisons of transmitting performance with

different type of network connection.

time (ms) type of
network

connection
original
model

simplified
model

all patches
at once

one patch
at once

100BaseT 411 45 150 206,558
10BaseT 982 190 761 207,814

PHS(64K) 10,956 2,143 6,039
file size
(bytes) 71,962 13,644 39,859 121,459

The transmitting result for downloading the original and simplified
modes of 3D model “bunny ” is shown in Table 3. The difference
of downloading all the patches at once and the sum of the time for
transmitting each patch separately could also be known obviously.
Since the latter one needs additional overhead for network
package’s header, compressed file’s header, and the
synchronization between the server and the client, the file size and
the transmission rate is much worse than the other one. This is
also a proving for the necessary of the QoS-like mechanism.

4 http://nis-lab.is.s.u-tokyo.ac.jp/~robin/jSM
5 http://nis-lab.is.s.u-tokyo.ac.jp/~robin/jGL

Table 4: Comparisons of transmitting and reconstructing

performance s of 3D model “bunny” with PHS.

model #faces #vertices time (ms)
original model 2,915 1,494 10,956

simplified model 531 302 2,143
1,145 609 4,545
1,739 906 6,737 reconstructed models
2,915 1,494 11,182

The performance which includes the transmission and
reconstruction for 3D model “bunny” by using PHS (Personal
Handyphone System) is shown in Table 4. The performances for
getting the reconstructed models are also listed in it. The time for
showing the simplified model is much less than showing the
original one. To show the reconstructed model as Figure 9 (f) does
cost only half of the time to show the original one, and the
differences between the two models are hardly recognized. Even
for reconstructing the original model from the simplified one and all
of the patches, the performance is just a little worse than showing
the original model directly.

Table 5: The transmitted 3D models’ resolution comparison

of 3D model “bunny” with different type of connections.

transmitted 3D models type of
connection time (ms) #faces #vertices
100BaseT 195 2,915 1,494
10BaseT 761 1,707 890

PHS(64K) 2,143 531 302

Table 5 shows the experimented result of the QoS-like controlling.
When transmitting the 3D model “bunny” with different network
connections, the client side receives difference 3D models with
difference resolutions. The user will get the original model at once
when using 100BaseT, but the user using PHS could only see the
simplified one. While using 10BaseT, the user receives the proper
resolution of the 3D model much better than the PHS user but
worse than the 100BaseT user.

7. CONCLUSION AND FUTURE WORK
In this paper, we have presented a new multiresolution streaming
mesh for Internet transmission with QoS-like controlling. When
using the streaming mesh on the Internet, the user first received a
simplified mesh which shape and features could still be recognized
easily with less data size due to the current network bandwidth the
user faces. If it is necessary to use the model with more details, the
server then transmits some patches to the client for reconstructing
the original 3D model progressively, and the flow control is done
by a QoS-like mechanism. Finally, if the user really needs the
original 3D model, after receiving all the patches, he or she will get
the lossless original 3D model.

By using this client/server model, the users could receive different
3D models in different resolutions according to their current
network bandwidth. Moreover, the 3D model provider does not
need to prepare so many different 3D models on the server side.
He or she is asked to put only one 3D model with the streaming
mesh format on the server, and the server program will talk with
the client program to offer the proper 3D model.

The compress rate of some models which have several features is
worse than other models, so how to combine the un-removable
vertices to decrease the rest vertex number is important . To
simplify a 3D model with texture mapping is also our future work.
Since we have categorized all the vertices into several levels when
doing the 3D mesh simplification process, it is possible to make a
hierarchy structure of removed vertices. This information could be
used to render the 3D model with LOD (level-of-detail) and
support other researches about geometric meshes.

8. ACKNOWLEDGEMENTS
We would like expressing our appreciation to Prof. Jieqing Feng,
who gives us many useful suggestions about the geometric
modeling. Furthermore, the 3D mesh models used in this paper is
downloaded from Large M odels Archive6 at Georgia Tech. and the
FTP site7 of H. Hoppe in Microsoft Research. Thanks for their
kindly supports here.

9. REFERENCES
[1] The Source for Java™ Technology. Sun Microsystems, Inc.,

http://java.sun.com, 2001.

[2] P. Alliez and M. Desbrun. Progressive Compression for
Lossless Transmission of Triangle Meshes. In ACM
SIGGRAPH 2001 Conference Proceedings, pages 195-202,
2001.

[3] B. Braden, D. Clark and S. Shenker. RFC 1633: Integrated
Services in the Internet Architecture: an Overview. The
Internet Society, 1994.

[4] B.-Y. Chen and T. Nishita. jGL and its Applications as a
Web3D Platform. In ACM Web3D 2001 Conference
Proceedings, pages 85-91, 2001.

[5] J. Cohen, A. Varshney, D. Manocha, G. Turk, H. Weber, P.
Agarwal, F. Brooks and W. Wright. Simplification Envelopes.
In ACM SIGGRAPH 96 Conference Proceedings, pages 119-
128, 1996.

[6] M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery
and W. Stuetzle. Multiresolution Analysis of Arbitrary
Meshes. In ACM SIGGRAPH 95 Conference Proceedings,
pages 173-182, 1995.

[7] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P.
Leach and T. Berners-Lee. RFC 2616: Hypertext Transfer
Protocol -- HTTP/1.1. The Internet Society, 1999.

[8] M. Garland and P. S. Heckbert. Simplifying Surfaces with
Color and Texture Using Quadric Error Metrics. In IEEE
Visualization 98 Conference Proceedings, pages 263-269,
1998.

[9] M. Garland and P. S. Heckbert. Surface Simplification Using
Quadric Error Metrics . In ACM SIGGRAPH 97 Conference
Proceedings, pages 209-216, 1997.

[10] M. Garland, A. Willmott and P. S. Heckbert. Hierarchical
Face Clustering on Polygonal Surfaces. In ACM 2001
Symposium on Interactive 3D Graphics Proceedings, pages
49-58, 2001.

6 http://www.cc.gatech.edu/projects/large_models
7 ftp://ftp.research.microsoft.com/users/hhoppe/data

[11] P. S. Heckbert and M. Garland. Survey of Polygonal Surface
Simplification Algorithms. In ACM SIGGRAPH 97
Conference, Multiresolution Surface Modeling Course Notes ,
1997.

[12] H. Hoppe. New Quadric Metric for Simplifying Meshes with
Appearance Attributes. In IEEE Visualization 99 Conference
Proceedings, pages 59-66, 1999.

[13] H. Hoppe. Efficient Implementation of Progressive Meshes.
In Computer & Graphics . Vol. 22, No. 1, pages 27-36, 1998.

[14] H. Hoppe. View-dependent Refinement of Progressive
Meshes. In ACM SIGGRAPH 97 Conference Proceedings,
pages 189-198, 1997.

[15] H. Hoppe. Progressive Meshes. In ACM SIGGRAPH 96
Conference Proceedings, pages 99-108, 1996.

[16] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald and W.
Stuetzle. Mesh Optimization. In ACM SIGGRAPH 93
Conference Proceedings, pages 19-26, 1993.

[17] A. Khodakovsky , P. Schröder and W. Sweldens. Progressive
Geometry Compression. In ACM SIGGRAPH 2000
Conference Proceedings, pages 271-278, 2000.

[18] A. Lee, W. Sweldens, P. Schoröder, L. Cowsar and D. Dobkin.
MAPS: Multiresolution Adaptive Parameterization of
Surfaces. In ACM SIGGRAPH 98 Conference Proceedings,
pages 95-104, 1998.

[19] R. Ronfard and J. Rossignac. Full-range Approximation of
Triangulated Polyhedra. In Computer Graphics Forum
(EUROGRAPHICS 96 Conference Proceedings), Vol. 15, No.
3, pages 67-76, 1996.

[20] P. Sander, J. Snyder, S. Gortler and H. Hoppe. Texture
Mapping Progressive M eshes. In ACM SIGGRAPH 2001
Conference Proceedings, pages 409-416, 2001.

[21] D. To, R. Lau and M . Green. An Adaptive Multi-Resolution
Method for Progressive Model Transmission. In Presence:
Teleoperators and Virtual Environments, Vol. 10, No. 1,
pages 62-74, 2001.

[22] W. J. Schroeder, J. A. Zarge and W. E. Lorensen. Decimation
of Triangle Meshes. In ACM Computer Graphics
(SIGGRAPH 92 Conference Proceedings) , Vol. 26, No. 2,
pages 65-70, 1992.

[23] G. Turk. Re-tiling Polygonal Surfaces. In ACM Computer
Graphics (SIGGRAPH 92 Conference Proceedings), Vol. 26,
No. 2, pages 55-64, 1992.

