
Deploy Style Transfer on the Android Devices
1st 曾泓硯

Dept. of Engineering and Electronics
National Tsing Hua University

Taiwan
tony871107@cloud.nthu.edu.tw

2nd 廖宏儒
Dept. of Engineering and Electronics

National Tsing Hua University
Taiwan

hankliao1998@cloud.nthu.edu.tw

Abstract—Mobile devices equipped with Machine Learning
and Deep Learning models are going to be the mainstream in
the future. Among these models, we are interested in image
style transfer. We aim to deploy PyTorch models to Android
Platforms by TVM. Compare to our method, Tensorflow can
also be deployed to different platforms by Tensorflow Lite.
Although examples of style transfer in Tensorflow Lite haven’t
been released in public, we can still get benchmarks to compare
with.

Index Terms—style transfer, PyTorch, TVM, Android

I. INTRODUCTION

Deploying style transfer on android devices can be separated
into three parts – style transfer model, TVM, and Android.
First, we apply PyTorch to construct our Image Transform
Net and Loss Network to get good quality style transfered
image. Second, we utilize TVM to cross complie our PyTorch
model into ARM64 binary files. Last but not least, we imple-
ment Android program based on the application programming
interface that TVM provided.

Comparing to the benchmark that TensorFlow lite released
in its project homepage (500ms to transfer one image) [1], our
app spends about two seconds to transfer one image. However,
we haven’t improved our performance by using GPUs on the
smart phones. Besides, the smart phones that we experiment
on (Samsung S7 Edge) is different to the benchmark (Pixel 4,
iPhone XS).

II. METHODOLOGY

A. Style Transfer Model - PyTorch

We refer to the method by JUSTIN JOHNSON FOR PER-
CEPTUAL LOSSES FOR REAL-TIME STYLE TRANSFER [2] to
train our model, which consist of two part of networks: Image
Transform Net and Loss Network. We convert our model files
into onnx files. (Source code)

Fig. 1. Our work flow.

Fig. 2. Model of Perceptual Loss. [2]

• Image Transform Net:
It consist of several convolutional layers and residual layers.
We downsample the image by using convolutional layers,
passing spatial information by residual layers. As for up-
sampling, we refer to the method by WENZHE SHI for IS
THE DECONVOLUTION LAYER THE SAME AS A CONVOLU-
TIONAL LAYER? [3] by combining interpolation, padding
and convolutional layers. [4])

• Loss Network:
It evaluates the content loss and style loss, the main idea is
to utilize pre-trained VGG-16 network as loss function to
calculate mean square error between result from transform
network and input image, style image respectively. In VGG-
16, there are four relu layers, and each of layers content
different high dimensional information. In our project, we
fetch the result from second relu layer and calculate Gram
matrix to extract style feature from content feature. [2]

B. TVM

TVM (https://tvm.apache.org) is an open deep learning
compiler stack for CPUs, GPUs, and specialized accelerators.
It aims to close the gap between the productivity-focused
deep learning frameworks, and the performance- or efficiency-
oriented hardware backends. TVM cross compiles our onnx
files into arm-64 binary files. (.so, .json, .params)

https://github.com/pytorch/examples/tree/master/fast_neural_style
https://tvm.apache.org


TABLE I
PERFORMANCE COMPARISON

Solution Model Size Device CPU Time
Our solution 6 Mb/model Samsung S7 Edge 2000ms

TensorFlow Lite [1] 0.2 Mb/model
Pixel 3 540ms
Pixel 4 405ms

iPhone XS 251ms

C. Android

We implement application based on the application pro-
gramming interface that TVM provided. Firstly, we import
module into our application by loading .so, .json, .params files.
After that, we prepare the input of the model by resizing the
input image to the size of our input model. Then we invoke
the model. Afterwards, we adjust the output from the model
by clipping the output to the limit of value of the standard
ARGB.8888, and resizing the output image back to the original
size. In the end, we show the image in the application.

III. EXPERIMENTAL RESULTS

Table I shows that both our performance and model size
are worse than the benchmark on the style transfer example
homepage of TensorFlow Lite.

The CPU time of the TensorFlow Lite is calculated on the
application which used four threads. And it use a brand-new
smart phone that there is no background program running.
But we only run the model with one thread. And our smart
phone is installed with several app which run some tasks in
the background. The background program might increase the
running time of the model. Therefore, the running time of
our method might not be slower than that of TensorFlow Lite
under same circumstances.

IV. CONCLUSION

We deploy the style transfer model to the Android device
successfully. The performance of running the model on the
Android is two seconds per image.

There are several drawbacks in our flow: Firstly, training
model is time-consuming which takes approximate 6 hour for
one style transfer model. Maybe we can modify the structure
of the model to decrease the training time. On the other hand,
prediction takes some time too. Perhaps, we can try to use the
GPU to run the model on the mobile.

REFERENCES

[1] Artistic Style Transfer with TensorFlow Lite: https://www.tensorflow.
org/lite/models/style transfer/overview

[2] Justin, J., Alexandre, A. and Fei-Fei, L.: ”Perceptual Losses for Real-
Time Style Transfer and Super-Resolution”. ECCV (2016)

[3] Wenzhe, S., Jose, C. and Lucas, T.: ”Is the deconvolution layer the same
as a convolutional layer?”.

[4] Odena, et al., ”Deconvolution and Checkerboard Artifacts”, Distill, 2016.
http://doi.org/10.23915/dist

Fig. 3. The Figure shows that the results that we get from computer are as
same as from our APP.

https://www.tensorflow.org/lite/models/style_transfer/overview
https://www.tensorflow.org/lite/models/style_transfer/overview

	Introduction
	Methodology
	Style Transfer Model - PyTorch
	TVM
	Android

	Experimental Results
	Conclusion
	References

