Mathematical Analysis of Algorithms

Homework #1
Due Date:
Reading Assignment: Preface, Chapter 1, 2.1, 2.2
Problems:

1. 1–9
2. 1–16
3. 2–11
4. 2–22
5. Prove or disprove that the Knuth Sequence defined by

\[K(0) = 1; \]
\[K(n + 1) = 1 + \min \left(2K(\lfloor \frac{n}{2} \rfloor), 3K(\lfloor \frac{n}{3} \rfloor) \right), \text{ for } n \geq 0, \]

has the property that \(K(n) \geq n, \) for \(n \geq 0. \)
(The sequence begins 1, 3, 3, 4, 7, 7, 7, 9, 9, 10, 13, \ldots)

6. Consider the series of fractions

\[
\frac{1}{2}, \frac{1/2}{3/4}, \frac{1/3}{5/8}, \frac{1/4}{5/6}, \frac{5/6}{7/8}, \ldots
\]

Suppose that each fraction is simplified to be a fraction of two products of integers (for example, the third is \(\frac{14 \cdot 6}{3 \cdot 5 \cdot 8} \)). Prove that, for the \(n^{\text{th}} \) fraction, the sum of the \(k^{\text{th}} \) powers of the numbers in the numerator equals the sum of the \(k^{\text{th}} \) powers of the numbers in the denominator for \(0 \leq k < n. \) (For example, \(1^2 + 4^2 + 6^2 + 7^2 = 2^2 + 3^2 + 5^2 + 8^2. \))