Mathematical Analysis of Algorithms

Homework #10 (Last Set) Due Date: Reading Assignment: 6.5, 9.5–9.6 Problems:

- **1.** 9–7
- **2.** 9–32
- **3.** 9–35
- **4.** 9–36
- 5. A binomial tree is a tree having a special structure (irrelevant to this problem) which guarantees that the tree has 2^k nodes for some $k \ge 0$; a binomial tree with 2^k nodes is called a B_k tree. Each node in a B_k tree contains a real number called a key. The smallest key in a B_k tree can be found quickly, since it is always contained in the root of the tree.

A binomial queue of size $2^n - 1$ is a group of $n B_k$ trees with the form

$$\underline{A}_{0}$$
 \underline{A}_{1} ... \underline{A}_{n-2} \underline{A}_{n-1} $n \ge 1;$

it therefore has $2^0 + 2^1 + \cdots + 2^{n-2} + 2^{n-1} = 2^n - 1$ nodes, as its name implies. An interesting operation on binomial queues is

Program M. (*Find the minimum*) Given a binomial queue of size $2^n - 1$, we will find m, the smallest key in the queue and B_j , the tree containing m.

times executed

1	$j \leftarrow 0;$
1	$m \leftarrow \text{smallest key in the } B_0 \text{ tree};$
1	$k \leftarrow 1;$
n	while $k \leq n$ do
n-1	if smallest key in the B_k tree is $\leq m$ then do
C_n	$j \leftarrow k;$
C_n	$m \leftarrow \text{smallest key in } B_k \text{ tree};$
	$\mathbf{end};$
n-1	$k \leftarrow k+1;$
	$\mathbf{end};$

(A) The total running time of this program is $3n+2C_n+1$. The goal of this problem is to find the expected running time, $3n+2E(C_n)+1$. To do that, we need to find $E(C_n)$.

For the analysis, assume that the keys are $1, 2, ..., 2^n - 1$, that each of the $(2^n - 1)!$ permutations of the keys are equally likely, and that keys in permutations map onto keys in trees as follows:

The arrangement of the keys within the B_k trees is irrelevant, except that the smallest of the 2^k keys in a B_k tree appears in the root, Thus, if n = 4 and the permutation is

we have $C_4 = 2$ in **Program M** (the updates of *m* are shown by the arrows). First show that

$$E(C_n) = \sum_{1 \le k \le n-1} \frac{2^k}{2^{k+1} - 1}$$

using the hint given below. Then find the asymptotic value of $E(C_n)$ that equals $f(n) + \alpha + O(1/2^n)$. (The constant α will be in summation form, sum up the first few terms to get α to three decimal places).

Hint: Prove that m is updated in the k^{th} trip through the **while** loop independently of the number of previous updates. Then write $C_n = C_{n,1} + C_{n,2} + \cdots + C_{n,n-1}$, where $C_{n,k} = 1$ if m is updated during the k^{th} loop, and $C_{n,k} = 0$ otherwise.

(B) Program M can be sped up quite a bit if we test the binomial queues in the opposite order. Let Program M' be the following modification of Program M.

```
line 1 j \leftarrow n-1;
line 2 m \leftarrow smallest key in the B_{n-1} tree;
line 3 k \leftarrow n-2;
line 4 do while k \ge 0
line 9 k \leftarrow k-1;
et D be the number of times line 6 and
```

Let D_n be the number of times line 6 and 7 are executed in **Program M'**. The average running time of **Program M'** is $3n + 2E(D_n) + 1$. Show that $E(D_n) = \beta + O(1/2^n)$, where β is some constant.

Compute β to three decimal places. (The same hint as Part (A) applies.)

What is the asymptotic ratio between the running times of **Programs** \mathbf{M}' and \mathbf{M} ? (This tells us how much we saved by modifying **Program** \mathbf{M} .)

End of Homeworks! If you have reached this point, you can definitely pass this course. Congratulations and have a good vacation!