Mathematical Analysis of Algorithms

Homework #4 Due Date: Reading Assignment: Chapter 4 Problems:

- **1.** Prove that $\sum_{k|m} \frac{1}{k} \sum_{d|k} \mu(\frac{k}{d})c^d = \frac{1}{m} \sum_{d|m} \varphi(d)c^{\frac{m}{d}}$
- **2.** 4–29
- **3.** 4–38
- **4.** 4–41
- 5. The object of this problem is to determine the average execution time of the Insertion Sort algorithm. Suppose we want to sort n integers stored in an array X[0..n]. We assume that X[0] contains garbage and that the n integers are stored as $X[1], X[2], \ldots, X[n]$.

Insertion sort is the method commonly used by people to sort bridge hands: consider the integers one at a time and insert each in its proper place among those already considered. The following program does exactly that.

#times executed

for i := 2 to n do begin nvalue := X[i]; n-1place := i - 1;n-1 $A_n + n - 1$ while $(place \ge 1 \text{ and } X[place] \ge value)$ do begin A_n X[place+1] := X[place];place := place - 1; A_n end: n-1X[place + 1] := value;end:

Then number of times each statement is executed is given in the left column. Assume each statement takes one time unit to execute, except for the **while** statement. It takes two time units to execute, because there are two logical expressions to evaluate. The total running time of this algorithm is just

$$4A_n + 6n - 5.$$

To find the average running time, it suffices to find the average value of A_n , the number of times the inner loop is executed.

Assume that the *n* integers are $\{1, 2, ..., n\}$ and that all *n*! permutations of the *n* integers are equally likely. The average (or expected) value of A_n is $E(A_n) = B_n/n!$, where

$$B_n = \sum_{\substack{\text{each permutation}\\X[1], X[2], \dots, X[n]\\\text{of }\{1, 2, \dots, n\}}} \left(\begin{array}{c} \text{value of } A_n \text{ when the program}\\\text{is run on input} X[1], \dots, X[n] \\\text{is run on input} X[1], \dots, X[n] \end{array} \right).$$

For example, when n = 3, assume that we want to sort the integers $\{1, 2, 3\}$. For the 3! possible permutations, we get

X[1]	X[2]	X[3]	A_3
1	2	3	0
1	3	2	1
2	1	3	1
2	3	1	2
3	1	2	2
3	2	1	3

Therefore, $B_3 = 0 + 1 + 1 + 2 + 2 + 3 = 9$, so $E(A_3) = 9/3! = 3/2$.

- (a) Find a simple expression for $E(A_n)$ in terms of n. Do that by deriving a recurrence relation for B_n in terms of B_{n-1} , then solving it by using the appropriate "summation factor." Compute the average running time $4(E(A_n)) + 6n 5$.
- (b) One way to speed up the algorithm is to get rid of the "place \geq 1" expression, since it is seldom needed. To do that, we must initialize X[0] to $-\infty$. Now the "while" statement takes only one time unit to execute. Does this alteration affect the value of A_n ? Why or why not? What is the resulting average running time of the algorithm?

(c) Is this algorithm *stable*? If not, can you modify the algorithm to make it stable? A sorting method is *stable* if equal keys remain in the same relative order in the sorted sequence as they were in originally.