Chapter 8 Jordan Forms
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Jordan Normal Form

§1. Jordan’s Theorem

Definition.  The n by n matrix J , with X's on the diagonal, 1's on the superdiagonal and 0's elsewhere is
called a Jordan block matrix. A Jordan matrix or matrix in Jordan normal form is & block matrix that is
has Jordan blocks down its block diagonal and is zero elsewhere.

Theorem  Every matrix over C is similar to a matrix in Jordan normal form, that is, for every A4 there is
a P with J == P~1AP in Jordan normal form.

£2. Motivation for proof of Jordan’s Theorem
Consider Jordan block A = Jy », for example,

510
A=Jsa=10 5 1
0 065
We see that
Aey = bey
Aey = e + bey.
Aey = ep + 5eg
Writing As = A — 51 this becomes: '
Asel =0
Asez =e.
A593 = 9

which can be conveniently rewritten as a string of length 3 with value 5:

A A A
23 £ * Bg u r & i +» D

Since Ase; = 0, ey is an eigenvector with value 5. (A;)%e; = 0 and (4s)%es = 0 and so e; and e are
called generalized eigenvectors. Although there is no basis of eigenvectors, there is a basis of generalized
eigenvectors.

Definition  Define Ay = A— Al Call v # 0 a generalized eigenvector with value A for A if (4,)Pv = 0 for
some natural p. If p =1, v is called an eigenvector.

£3. Proof of Jordan’s Theorem

Introduction 1o the proof  Although there is no basis of eigenvectors, we show there is a basis of generalized
eigenvectors, More specifically we find & collection of strings:

Axy Ay A,

Win, ———F ... —— W] ———s 0
Ay Ax A
k 3 I
Wing w1 ————— 0

such that the w; ;'s form a basis. With respect to this basis the matrix of A is in Jordan normal form because
the i-th string generates a Jordan block J), n,, and conversely & Jordan matrix generates a collection of strings
of basis vectors. Accordingly we concern ourselves with generating strings of basis vectors.

The proof we give is due to Filippov {see Linear Algebra and Its Applications by G. Strang).

Proof Let A be n by n. The case n =1 is trivial. By “strong” induction, assume every smaller size matrix
can be put in Jordan normal form, which by the comments above, amounts to the existence of strings.

A has an eigenvector v with value A, Since Ajv = 0, we have 7% dim Ker Ay > 0. By the Rank+Nullity
Theorem (or directly, since the row reduced form of Ay has r free variables there must be n — r pivots) we
have dim Range 43 =n —r <n. Call W = Range Aj.




Step 1 Ay(W) C W so A, induces a transformation 7o W — W. Since dim(W) < n, the matrix of 7" is
of smaller size than n so by induction there are strings:

Axy Axy Ax
Win, — .. ——— wW;; ————— 0
Ay As,, Axg
w _— ..., — W — 0
kg k.1

where the wy,;’s form a basis for W — here we used the fact that (Ax),, = Axs,, d:afA,\{.

Step 2 Let ¢ = dim(W NKer Ay). Since w;; € Ker Ay,, g of the above strings are A, strings, say the

first g: A; = A for 1 < j < gq. At the other end of these strings, Win; € W = Range Ay so there are y; with
Ax .

Yi————Wjn, for 1 <5 <q.

Step 3 Since Ker A, is r dimensional and meets W on a ¢ dimensional subspace, some r — g dimensional

subspace Z of Ker Ay meets W only at 0. Let z1, ..., 2,y be a basis for Z.
This gives ¢ + (n — r) + {r — q) = n vectors in strings:

Ax Ax Ax Ay
Y1 —e— Wi, S wi,y ——— 0
Ay, A ' Ay ' Ay
¥y ——— Wan, y W1 _—
A A, Ax
7+1 g+1 q+1
Wailmass I > W ——— 0
Axg Ax, Axn,
Wh,nz, . * Wik, —_— 0
Ax
1 —_

Trq ———s 0

[t suffices to show they are linearly independent, so assume
Z a;y; + bejw,;,j + Z iz = 0.
i Wi i

Applying Ay gives a linear combination, L, in w; ;’s as one can see by referring to the strings above. Using
Ay, W = Wy 1 together with Ay = Ax, 4+ (A, — M) shows Ayw,, = W1 + (Ar — A)wg p, hence the
coefficient of the w;,,, for 1 < § < ¢ in linear combination L is a;. By linear independence of the w; ;’s we

obtain a; = 0. So
Zbijwi,j + Zc,;z.; = 0.
3 i

But Ei, j biywi,; = 0 and 37, ¢z = 0 since W and Z meet only at 0. By linear independence in W and Z,
b,‘j =0andc,-=0. l




Computing the Jordan Canonical Form

Let A be an n by n square matrix. If its characteristic equation x4(2) = 0
has & repeated root then A may not be diagonalizable, so we need the Jordan
Canonical Form. Suppose A is an eigenvalue of A, with multiplicity r as a
root of x4() = 0. The the vector v is an eigenvector with eigenvalue X if
Av = v or equivalently

(A= ADw=0. .
The trouble is that this equation may have fewer then r linearly independent
solutions for v. So we generalize and say that v is a generalized eigenvector
with eigenvalue A if
(A~ Al)kv =0

for some positive integer k. Now one can prove that there are exactly r
linearly independent generalized eigenvectors. Finding the Jordan form is
now a matter of sorting these generalized eigenvectors into an appropriate
order.

To find the Jordan form carry out the following procedure for each eigen-
value A of A. First solve (A — Al)v = 0, counting the number r; of lin-
early independent solutions. If r; = » good, otherwise r; < r and we must
now solve (A — AM)*v = 0. There will be 7 linearly independent solu-
tions where 7 > r1. If ro = 7 good, otherwise solving (A — AT%w = 0
gives r3 > 7y linearly independent solutions, and so on. Eventually one gets
r<rg<-.--<ry_1 <7y =7 The number ¥ is the size of the largest
Jordan block associated to A, and r; is the total number of Jordan blocks asso-

ciated to A. If we define 81 =T1, 8 =0M—"1,8 ="3—7"2,...,.8v =T"N—TpN_1
then s;, is the number of Jordan blocks of size at least k by k& associated to A.
Finally put mq = 81— 82, Mg = 89— 83,...,My_1 = $y_1— 5y and my = sx.

Then iy, is the number of k& by k& Jordan blocks associated to A. Once we've
domne this for all eigenvalues then we’ve got the Jordan form!

To find P such that J = P~'AP is the Jordan form then we need to
work a bit harder. We do the following for each eigenvalue A, First find
the Jordan block sizes associated to A by the above process. Put them in
decreasing order Ny > Ny > N3 > --- > N,. Now find a vector v1; such
that (A—A)Mwy; = 0but (A—AN¥~1vy 5 # 0. Define v19 = (A— vy 4,
vy = (A — Al)vy2, and so on until we get vy y,. We can’t go further as
(A--ADwyn, = 0. If we only have one block we’re OK, otherwise we can find
a vector vg such that (A — ALYy, =0, (A — A}V yy; o 0 and (this
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is important!) wy, is not linearly dependent on v;1,...,v1y,. Define
va2 = (A — AM)wvyy ete., until we get to vy y,. If k = 2 this is the end, if not
then choose vs1 with (A — AI}Mwg; =0, (A— AI)¥ vy, # 0 and v3, not

linearly dependent on v11,...,v1,n,,%21,.. V2N, Keep going! Eventually
we get 7 linearly independent vectors vy,1,v19,..., 05N, Lot
Py = (vpn, -0 v11)

be the n by r matrix whose columns are these vectors in reverse order.
Once we've done this for all eigenvalues A stick the matrices Py together
horizontally to get an n by n matrix P. Then P will be non-singular, and
P7'AP = J, the Jordan form.

A worked example

To illustrate this method, I give a reasonably sized example (6 by 6)
which I hope will make things clear, and I hope is safely too big come up on
any exam! I have used MAPLE in the computations; only a truly hardy soul
would try this one by hand!

Let
0 0 0 0 -1 -1

0 -8 4 -3 1 -3
-3 13 -8 6 2 9
-2 14 -7 4 2 10

1 -18 11 -11 2 —6
-1 19 -11 10 -2 7

The characteristic polynomial of this matrix is

A=

xa(t) =18 +3t° —10t> — 1562 — 0t — 2= (¢ + 1)5(t — 2)

and so its eigenvalues are —1 with multiplicity 5, and 2 with multiplicity 1.
I'll deal with A = —1 first. We first solve (A + I)v = 0. The matrix

1 0 0 0 -1 -1
0 -7 4 -3 1 -3
-3 13 -7 6 2 9
-2 14 -7 5 2 10
1 —-18 11 —-11 3 -6
-1 19 -11 10 -2 8

A+T=




has REF

1000 -1 -1
0100 1 32
0010 2 3/2
0001 0 —1/2
0000 0 0
00600 O 0

Hence (A + I)v has 2 linearly independent solutions, i.e., r; = 2. As r; <
r =5 then we must solve (4 + I)*v = 0. Now

1 -1 0 1 -2 =3
-2 -16 9 -11 4 -3
-1 37 -18 17 2 21

1 3 —-18 19 -2 15
-1 53 27 =28 2 -24

2 52 =27 29 -4 21

(A+ 1) =

whose REF is

10 —1/2 3/2 —-2 —5/2
01 —1/2 1/2 0 1/2
00 0 0 0 0
00 o0 0 0 0
00 0 0 0 0
60 ¢ 0 0 0

The system (A + I)?v has r, = 4 linearly independent solutions. As ry <7,
then we now consider (A + I)*v. Now

0 0 0 00 0
0 -54 27 =27 O -27
0 108 —-54 54 0 54
0 108 -54 54 0 54
0 —-162 81 81 0 -—-81
0 162 —-81 81 0 81




and it’s easy to see (!) that the REF of this matrix is

01 —1/2 1/2 0 1/2
00 0 00 O
00 0 DO 0
00 0 00 0
060 0 00 0
90 0 00 0

Hence (A + 7)®*v = 0 has r3 = 5 linearly independent solutions, and as
73 = r we conclude this part of the proceedings. We calculate sy = r; = 2,
Sg=rg—ri=2andsz=r3—ry=1;alsoms =83 =1, My =8y — 83 = 1
and m; = $1 — 53 = 0. Hence, associated to A = —1, thereis a 2 by 2 and a
3 by 3 Jordan block. As the other eigenvalue A = 2 has multiplicity 1, then
there’s just a 1 by 1 Jordan block associated to A = 2. Hence the Jordan
canonical form of A is J=

-1 1 0 0 00
0 -1 0 0 00
0 0 -1 1 00
0 ¢ 0 -1 10
0 0 0 0 -120
6 0 0 0 0 2

Let’s compute the matrix P. We've already done most of the work for
A = —1. The Jordan blocks have sizes Ny = 3 and N, = 2. We start by
finding a vector vy,1 with (A+ I)%v11 = 0 but (A + I)?v;,; # 0. Looking at
the REFs of these matrices we see that we can choose

P11 = (1 0000 O)t
Now
’01,2 = (/1 + I)'Ul,l = (1 0 -3 -2 1 “‘].)t

and
'U]_,3=(A+I)'UI,2=(1 -2 —-11 -1 2)t

(As a check one verifies (A 4 Iv1g = 0.) The next block is 2 by 2, so one
must find v,y with (A + I)?ve; =0, (4 + Ive, # 0, and such that vy 18
not linearly dependent on vy 1, v12 and v; 3. The vector

’U2,1=(1 1200 O)t
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fits the bill, and
Voo = (A + I)’Ug,l = (1 1 -4 -2 5 —4)t

Again one checks that (A + I)vsg = 0 The matrix P_; is the 6 by 5 matrix
with columns vg 3, v51, ¥13, ¥1,2 and vy 1 in that order and so

11 1 11
11 -2 00
—4 2 -1 -3 0
Py = -2 0 1 =20
50 -1 10
-4 0 2 —-10

One must now consider A = 2. As this is a simple root, P, is just an
eigenvector with eigenvalue 2. One such is

P=(01 -2 -2 3 -3

and sticking together P_; and P, gives

11 1 11 0

11 -2 00 1

-4 2 -1 -3 0 -2

P= -2 0 1 -2 0 -2
50 -1 10 3

-4 0 2 -10 -3

One now checks that P~1AP = .J as required!
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