Linear Algebra

Homework #11 Due Date: Reading Assignment: Chapter 6 Problems:

- 1. Exercises 6.1-1(i)
- 2. Exercises 6.1–4. (This exercise is as follows. Let $V \subset \mathbb{R}^n$ be a subspace of \mathbb{R}^n , and let $P : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ and $R : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ be the linear transformatins defined respectively by projecting onto and reflecting across V. Find the eigenvalues and eigenvectors of both P and R. For the answers of the eigenvectors, please give the eigenspace $E(\lambda)$ for each eigenvalue λ of P and R.)
- **3.** Exercises 6.1–9
- 4. Exercises 6.1–10(a) (Hint: it is true)
- 5. Exercises 6.2–11
- **6.** Exercises 6.3–9
- 7. A and B are two $n \times n$ matrices. Prove that AB and BA have the same set of eigenvalues by proving that a scalar $\lambda \neq 0$ is an eigenvalue of AB if and only it is an an eigenvalue of BA. (Hint: consider $\mathbf{y} = B\mathbf{x}$, where $AB\mathbf{x} = \lambda \mathbf{x}$)